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Abstract. We consider the higher order Schrödinger operator H = (−∆)m+V (x) in n dimensions

with real-valued potential V when n > 4m−1, m ∈ N. We show that for any 2n
n−4m+1

< p ≤ ∞ and

0 ≤ α < n+1
2

− 2m− n
p
, there exists a real-valued, compactly supported potential V ∈ Cα(Rn) for

which the wave operators W± are not bounded on Lp(Rn). As a consequence of our analysis we show

that the wave operators for the usual second order Schrödinger operator −∆+V are unbounded on

Lp(Rn) for n > 3 and 2n
n−3

< p ≤ ∞ for insufficiently differentiable potentials V , and show a failure

of Lp′ → Lp dispersive estimates that may be of independent interest.

1. Introduction

We consider the higher order Schrödinger equation

iψt = (−∆)mψ + V ψ, x ∈ Rn, m ∈ N,

with a real-valued and decaying potential V . We denote the free higher order Schrödinger operator

by H0 = (−∆)m and the perturbed operator by H = (−∆)m + V (x). We study the wave operators,

which are defined by

W± = s – lim
t→±∞

eitHe−itH0 .

Recent work by the first and third authors, [3], showed that for m > 1 and n > 2m the wave operators

extend to bounded operators on Lp(Rn) for 1 ≤ p ≤ ∞ for sufficiently smooth small potentials.

The case m = 1 was established by Yajima in [16]. Here we show that when n > 4m − 1 and

2n
n−4m+1 < p ≤ ∞ the Lp boundedness of the wave operators may fail even for compactly supported

continuous potentials if the potential is not sufficiently smooth. Our main result is the following.

Theorem 1.1. Fix m ∈ N, let n > 4m − 1 and 2n
n−4m+1 < p ≤ ∞, for all 0 ≤ α < n+1

2 − 2m − n
p

there exists a real-valued compactly supported potential of class Cα(Rn) for which the wave operators

W± are not bounded on Lp(Rn).
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For the convenience of the reader, in Section 3 we prove Theorem 1.1 when p = ∞, then adapt the

argument in Section 4 to the remaining cases of 2n
n−4m+1 < p <∞. By considering frequency-localized

dispersive estimates, we provide a direct argument for arbitrary integer order m that simplifies the

m = 1 argument for the dispersive bounds in [6] and extends to m ≥ 1.

For comparison, the results on boundedness in [3] require some smoothness on the potential when

n ≥ 4m − 1. Writing ⟨x⟩ to denote (1 + |x|2) 1
2 , F(f) or f̂ to denote the Fourier transform of f and

defining the norm ∥f∥Hδ = ∥⟨·⟩δ f̂(·)∥2, we recall the relevant statements below.

Theorem 1.2 (Theorem 1.1 in [3]). Let n > 2m. Assume that the V is a real-valued potential on Rn

and fix 0 < δ ≪ 1. Then ∃C = C(δ, n,m) > 0 so that the wave operators extend to bounded operators

on Lp(Rn) for all 1 ≤ p ≤ ∞, provided that

i)
∥∥⟨·⟩ 4m+1−n

2 +δV (·)
∥∥
2
< C when 2m < n < 4m− 1,

ii)
∥∥⟨·⟩1+δV (·)

∥∥
Hδ < C when n = 4m− 1,

iii)
∥∥F(⟨·⟩σV (·))

∥∥
L

n−1−δ
n−2m−δ

< C for some σ > 2n−4m
n−1−δ + δ when n > 4m− 1.

See [3] for other statements that remove the smallness requriement on the potential. The arbitrarily

small differentiability assumption when n = 4m − 1 appears to be an artifact of the method in [3].

We note that the norm used when n > 4m− 1 is finite when ⟨x⟩σV (x) has more than n
n−1 (

n+1
2 − 2m)

derivatives in L2(Rn). We believe this requirement on smoothness of the potential is not sharp, in

light of the counterexample constructed here. When m = 1 the counterexample in [6] and the positive

result of the first and third authors in [2] show that α = n−3
2 is sharp for L1 → L∞ dispersive

estimates, at least when n = 5, 7. In effect, our result shows that one cannot expect decay of a class

of potentials alone suffice to ensure the boundedness of the wave operators as is the case in lower

dimensions, when 2m < n < 4m − 1 above. Instead, one also expects a degree of differentiability on

the potential is needed to ensure boundedness in high dimensions.

The potentials considered here also suffice to imply, see for example [13, 1, 14], the existence, L2-

boundedness, asymptotic completeness, and intertwining identity for the wave operators. In particular,

we have the identity

f(H)Pac(H) =W±f((−∆)m)W ∗
±.(1)

Here Pac(H) is the projection onto the absolutely continuous spectral subspace of H, and f is any

Borel function. One use of (1) is to obtain Lp-based mapping properties for the perturbed operator

f(H)Pac(H) from the simpler free operator f((−∆)m). The boundedness of the wave operators on

Lp(Rn) for any choice of p ≥ 2 with the function f(·) = e−it(·) yield dispersive estimates of the form

∥e−itHPac(H)∥Lp′→Lp ≲ |t|−
n

2m+ n
pm ,

1

p
+

1

p′
= 1.(2)
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To establish our results, we appeal to the intertwining identity and show that certain dispersive

estimates fail for a specific choice of f(·) for small time when localized to large frequencies.

We note that our results include the case of m = 1, the usual second order Schrödinger operator in

dimensions n > 3. The results of Theorem 1.1 are, to the best of the authors’ knowledge, new even

in this case. In particular showing that the wave operators need not be bounded on 2n
n−3 < p ≤ ∞ for

insufficiently smooth potentials. We also show that the Lp → Lp′
dispersive estimates

∥∥∥∥eit(−∆+V )Pac(−∆+ V )

∥∥∥∥
p→p′

≲ |t|−
n
2 ( 2

p−1), when n > 3 and 1 ≤ p <
2n

n+ 3

fail in this case, see Corollary 4.1 below.

Our work is inspired by recent work by the first and third authors on the Lp-continuity of the higher

order wave operators in [3] and the counterexample to dispersive estimates in the m = 1 case of the

second author and Visan in [6]. The recent work on the Lp-boundedness of the wave operators for

higher order Schrödinger operators was sparked by the work of Feng, Soffer, Wu and Yao on weighted

L2-based “local dispersive estimates” for higher order Schrödinger operators considered in [4], which

extends the m = 1 result of Jensen [8]. In addition, the recent work on the Lp(R3) boundedness of the

wave operators for the fourth order (m = 2) Schrödinger operators by the second and third authors

[5], and the extensive works in the case of m = 1 most notably that of Yajima, [16, 17, 18]. The Lp(R)

boundedness has recently been investigated by Mizutani, Wan and Yao in [12]. The L2 existence and

other properties of the higher order wave operators have been studied by many authors, for example

by Agmon [1], Kuroda [10, 11], Hörmander [7], and Schechter, [13, 14].

Similar to the usual second order Schrödinger operator, there is a Weyl criterion and σac(H) =

σac(H0) = [0,∞) for sufficiently decaying potentials. In contrast, decay of the potential is not sufficient

to ensure the lack of eigenvalues embedded in the continuous spectrum for the higher order operators,

[4]. Even perturbing with compactly supported, smooth potentials may induce embedded eigenvalues.

For the potentials we consider, we show that the eigenvalues cannot be too large, which allows the use

of a limiting absorption principle for the perturbed operator on the interval [CV ,∞) for a sufficiently

large CV > 0, see Lemma 3.2 below.

To prove Theorem 1.1 we show the failure of a dispersive estimate based on detailed analysis of

oscillatory integrals involving the resolvent operators. The splitting identity for z ∈ C \ [0,∞), (c.f.

[4]) allows us to study the resolvent ((−∆)m − λ)−1 in terms of R0(z) = (−∆− z)−1, the usual (2nd

order) Schrödinger resolvent.

(3) R0(z)(x, y) := ((−∆)m − z)−1(x, y) =
1

mz1−
1
m

m−1∑
ℓ=0

ωℓR0(ωℓz
1
m )(x, y)
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here ωℓ = exp(i2πℓ/m) are the mth roots of unity. It is convenient to use the change of variables

z = λ2m with λ restricted to the sector in the complex plane with 0 < arg(λ) < π/m,

(4) R0(λ
2m)(x, y) := ((−∆)m − λ2m)−1(x, y) =

1

mλ2m−2

m−1∑
ℓ=0

ωℓR0(ωℓλ
2)(x, y).

The kernal of higher order Schrödinger resolvents R0(λ
2m) grow like λ

n+1
2 −2m in the spectral vari-

able when n > 4m− 1, this growth necessitates a control over derivatives of the potential which was

controlled in terms of FLr norms in [3], similar to the conditions for the second order Schrödinger

established by Yajima, [16]. When m = 1 this growth may be exploited to cause a failure of L1 → L∞

dispersive estimates in dimensions greater than three without sufficient smoothness of the potential; a

counterexample was constructed by the second author and Visan, [6]. We adapt and simplify this argu-

ment by considering L1 → L∞ estimates of the operators of the form H
n(m−1)

2m eitHψ(H/L2m)Pac(H),

with ψ(s) is a cut-off to frequencies of size s ≈ 1 and L is a sufficiently large constant. Treating this

operator as an element of the functional calculus, the modified Stone’s formula is

H
n(m−1)

2m eitHψ(H/L2m)Pac(H)f(x) =
1

2πi

∫ ∞

0

λ
n(m−1)

2m eitλψ(λ/L2m) dEac(λ)f(x).

Here the difference of the limiting resolvent operators, R±
V (λ) = limϵ→0+((−∆)m + V − λ ∓ iϵ)−1,

provides the spectral measure dEac(λ) = [R+
V (λ) − R−

V (λ)] dλ. These operators are well-defined

between weighted spaces by Agmon’s limiting absorption principle, and are well studied in [3]. By

appropriately relating the frequency and time, we show a dispersive estimate that the free operator

(when V = 0) satisfies cannot hold for the perturbed operator as t → 0. Using the intertwining

identity, (1), we show the wave operators are not bounded on L∞. By appropriately rescaling both

the powers of H and the time decay, we extend the argument to p <∞.

The presence of an operator H
n(m−1)

2m in the dispersive estimate is natural in the following sense:

For m > 1, the free fundamental solution eitH0(x, y) has a central peak where |x − y| ≲ |t| 1
2m , then

experiences a combination of polynomial decay and oscillation (similar to an Airy function) for larger

distances |x− y|. Differentiating n(m− 1) times yields an operator whose kernel is approximately the

same size for all values of |x − y|, so the L1 → L∞ bound can be achieved at every length scale or

when localized to any frequency band.

The paper is organized as follows. In Section 2 we show that the free operator satisfies a family

of dispersive estimates. In Section 3 we show that the perturbed operator cannot satisfy the same

L1 → L∞ dispersive estimate as the free operator for a specifically constructed potential. As a

consequence, the wave operator is not bounded on L∞. Finally, in Section 4 we show how the argument

may be adapted to construct a class of potentials for which the wave operators are unbounded on the

larger range of 2n
n−4m+1 < p ≤ ∞.
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2. The free estimate

In this section we establish a family of dispersive estimates that the free operator H0 = (−∆)m

satisfies. In Section 3 we construct a compactly supported potential for which the perturbed operator

cannot satisfy the analogous bound.

Proposition 2.1. ∥∥H n(m−1)
2m

0 eitH0
∥∥
1→∞ ≲ |t|−n

2 ,

and for all σ ∈ R, ∥∥H n(m−1)+iσ
2m

0 eitH0
∥∥
1→∞ ≲ (1 + |σ|)

n+2
2 |t|−n

2 .

Proof. Using the splitting identity (4), along with the fact that R+
0 (ωℓλ

2) = R−
0 (ωℓλ

2) for ωℓ /∈ R,

that is when ωℓ ̸= 1, we have

[R+
0 −R−

0 ](λ
2m)(x, y) =

1

mλ2m−2
[R+

0 −R−
0 ](λ

2)(x, y).(5)

Hence, one need only understand the usual second order free resolvent to understand the estimates

in Propostion 2.1. As usual, we estimate the evolution by using the functional calculus, in this case,

we’ll estimate (ignoring constants)

sup
x,y∈Rn

∣∣∣∣ ∫ ∞

0

eitλ
2m

λn(m−1)+1+iσ[R+
0 −R−

0 ](λ
2)(x, y) dλ

∣∣∣∣.(6)

We utilize the “symbol class” representation for the Schrödinger operators used by the second author

and Visan in [6] to write

[R+
0 −R−

0 ](λ
2)(x, y) = λn−2

(
eiλ|x−y|A1(λ|x− y|)− e−iλ|x−y|A2(λ|x− y|)

)
,

where A1(s), A2(s) = Õ(⟨s⟩ 1−n
2 ). Here f(s) = Õ(⟨s⟩j) means |∂ks f(s)| ≲ ⟨s⟩j−k for each k = 0, 1, 2, . . .

We only consider the case t > 0 and when there is a ‘−’ sign on the phase; the other cases are

similar or easier. Therefore, we only prove that

sup
x,y∈Rn,L>0,t>0

tn/2
∣∣∣∣ ∫ ∞

0

eitλ
2m−iλ|x−y|λnm−1+iσA2(λ|x− y|)χ(λ/L) dλ

∣∣∣∣ ≲ 1.

Only the function A2(λ|x − y|) is present, so we omit the subscript in the rest of the calculation.

Changing the variable λ|x−y| 7→ λ and appropriately renaming the variables t 7→ t|x−y|2m, L|x−y| 7→

L, it suffices to prove that

sup
t>0,L>0

tn/2
∣∣∣∣ ∫ ∞

0

eitλ
2m−iλλnm−1+iσA(λ)χ(λ/L) dλ

∣∣∣∣ ≲ 1.(7)
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Note that the phase ϕ(λ) = tλ2m − λ has a critical point at λ0 = (2mt)−
1

2m−1 . Let ψ1 be a smooth

cutoff for the set |λ| ≈ λ0, ψ2 for the set |λ| ≪ λ0 and ψ3 for the set |λ| ≫ λ0 so that ψ1+ψ2+ψ3 ≡ 1.

Let

Ij :=

∫ ∞

0

eitλ
2m−iλλnm−1+iσA(λ)ψj(λ)χ(λ/L) dλ, j = 1, 2, 3.

Note that in the support of ψ1(λ), we have ϕ′′(λ) ≈ tλ2m−2
0 . Therefore by the corollary on page 334

of [15], we have

|I1| ≲ (tλ2m−2
0 )−1/2

∫ ∣∣∂λ(λnm−1+iσA(λ)ψ1(λ)χ(λ/L)
)∣∣dλ

≲ t−1/2⟨σ⟩λ1−m+nm−1
0 ⟨λ0⟩

1−n
2 ≲ t−1/2⟨σ⟩λ(2m−1)(n−1)/2

0 ≈ ⟨σ⟩t−n/2.

Note that on the support of ψ2, where |λ| ≪ λ0, we have |ϕ′| ≳ 1. Therefore we may integrate by

parts N ≤ nm− 1 times to obtain the bound

|I2| ≲
∫ ∞

0

∣∣∣[∂λ 1

ϕ′(λ)

]N(
λnm−1+iσA(λ)ψ2(λ)χ(λ/L)

)∣∣∣dλ.
Noting that the effect of a derivative on each term can be bounded by multiplication by ⟨σ⟩λ−1, we

have

|I2| ≲ ⟨σ⟩N
∫ λ0

0

λnm−1−Ndλ ≲ ⟨σ⟩Nλnm−N
0 ≲ ⟨σ⟩N t−

nm−N
2m−1 , 0 ≤ N ≤ nm− 1.

Picking N = 0 when t > 1 and n
2 ≤ N ≤ nm− 1 for 0 < t < 1 yields stronger bounds than t−n/2.

It remains to consider I3. On the support of ψ3, we have |ϕ′| ≳ tλ2m−1 ≳ 1. Therefore by

integration by parts N times we obtain

|I3| ≲ ⟨σ⟩N
∫ ∞

λ0

λnm−1−N ⟨λ⟩
1−n
2 [tλ2m−1]−Ndλ = ⟨σ⟩N t−N

∫ ∞

λ0

λnm−1−2mN ⟨λ⟩
1−n
2 dλ.

When t < 1, λ0 ≳ 1 and taking N >
nm+ 1

2−
n
2

2m implies the stronger bound ⟨σ⟩N t−n
2 t

N− 1
2

2m−1 . For t > 1,

take N = 0 on [λ0, t
− 1

2m ], and take N > n/2 on [t−
1

2m ,∞) to obtain

≲
∫ t−

1
2m

0

λnm−1dλ+ ⟨σ⟩N t−N

∫ ∞

t−
1

2m

λnm−1−2mNdλ ≲ t−n/2 + ⟨σ⟩N t−N t−
1

2m (nm−2mN) ≲ ⟨σ⟩N t−n/2.

At no point was integration by parts needed more than n
2 +1 times, so the sum I1+I2+I3 is bounded

by ⟨σ⟩n+2
2 t−n/2. □

The above bound is all we need in Section 3 to establish the result of Theorem 1.1 when p = ∞.

For the full range of p considered in Section 4, we need the following corollary.

Corollary 2.2. Let ψ be a smooth cutoff for the set {λ ∈ R : λ ≈ 1}. For all p ∈ [1, 2] and L > 0 we

have

∥H
n(m−1)

2m ( 2
p−1)

0 eitH0ψ(H0/L)∥p→p′ ≲ |t|−
n
p +n

2 ,

where the implict constant is independent of p and L.
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Proof. The claim without ψ follows from complex interpolation of the bound in Proposition 2.1 with

the L2 conservation law. The claim with ψ follows from this and the fact that ψ̂ ∈ L1. □

3. Failure of the dispersive estimate

In this section we show that the perturbed evolution cannot satisfy the same dispersive bound as

the free evolution. For clarity, we concentrate in this section on the failure of the L1 → L∞ dispersive

estimate and consequently the unboundedness of the wave operator on L∞. In Section 4, we show

how to adapt this argument to a larger range of p.

Let ψ be a smooth cutoff for frequencies λ ≈ 1. Note that the L∞ boundedness of wave operators

together with asymptotic completeness, the intertwining identity (1) and the bound in Corollary 2.2

imply that the bound

(8)
∥∥H n(m−1)

2m eitHψ(H/L2m)Pac(H)
∥∥
L1→L∞ ≲ |t|−n/2

holds for all L > 0 uniformly in L.

Let Cα(B(0, 2)) be the Banach space of real-valued Cα functions supported in B(0, 2). We prove

that the inequality

(9) sup
t>0,L>0

tn/2
∥∥H n(m−1)

2m eitHψ(H/L2m)Pac(H)
∥∥
L1→L∞ ≤ CV

cannot hold for all V ∈ Cα(B(0, 2)) if 0 ≤ α < n+1
2 −2m. By showing that this dispersive bound fails

for insufficiently smooth potentials V for small times t→ 0, we show that the wave operators are not

bounded on L∞(Rn).

To do so we iterate the resolvent identity to expand the perturbed resolvent into a Born series

RV (z) =

2M−1∑
j=0

[
R0(z)(−VR0(z))

j
]
− (R0(z)V )MRV (z)(VR0(z))

M .(10)

We note that the j = 0 term corresponds to the free evolution. In the following subsections we first

show that the first term of the Born series, when j = 1, for large frequencies and small times does not

satisfy the dispersive bound. In the following subsection, we show that the final term in the identity

(the “tail”) obeys the dispersive bound. Finally, we use these facts to show that the full evolution

can’t satisfy the dispersive bound.

3.1. The first term of the Born series. First we consider the first term of the Born series of the

operator in (9). Ignoring the constants, we write it’s kernel, KL,t, as a difference of kernels

K±
L,t(x, y) =

∫ ∞

0

∫
Rn

eitλ
2m

λ2m−1λn(m−1)R±
0 (λ

2m)(x, z)V (z)R±
0 (λ

2m)(z, y)ψ(λ2m/L2m)dzdλ

Let f be the L1 normalized characteristic function of B(0, 1), and let fL(x) = (CL)nf(x(CL)). Below

C will be chosen to be large to guarantee that the relevant values of |x| and |y| are ≪ 1. In what
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follows we prove that the dispersive estimate fails by letting t = L−(2m−1) and taking L→ ∞. With

t
n
2 = L

n
2 −nm, we define

a1,L(V ) = L
n
2 −nm

∫
Rn×Rn

KL,L−(2m−1)(x, y)fL(x)fL(y)dxdy.

Note that a1,L is a linear operator on Cα(B(0, 2)). By uniform boundedness principle, if the bound

in (9) holds for the first term of the Born series and for all V ∈ Cα(B(0, 2)), then we have

(11) ∀V ∈ Cα(B(0, 2)), sup
L>0

|a1,L(V )| ≤ Cα∥V ∥Cα(B(0,2)).

Therefore, it suffices to find a sequence {VL}L>1 ⊂ Cα(B(0, 2)) so that

lim
L→∞

|a1,L(VL)|
∥VL∥Cα(B(0,2))

= ∞.

Note that for λ|x− z| > 1, we have

(12) R±
0 (λ

2)(x, z) = e±iλ|x−z|λn−2ω±(λ|x− z|),

where ω±(s) = c±s
1−n
2 + Õ(s−

1+n
2 ), s > 1. In our argument below, we have λ ≈ L large and

|x − z| ≈ 1, which allows us to avoid the logarithmic behavior of even dimensional resolvents when

λ|x− z| ≪ 1. Using this in the splitting formula for R±
0 (λ

2m), (4), and noting the exponential decay

of the remaining terms in the splitting identity allows them to be absorbed into ω±(λ|x− z|), we have

for λ|x− z| > 1

R±
0 (λ

2m)(x, z) = e±iλ|x−z|λn−2mω±(λ|x− z|).

Here, by a slight abuse of notation, ω± satisfies the same bounds as ω± in (12). One can also see

Lemmas 3.2 and 6.2 in [3] for more detailed representations of the resolvent. Using this in the formula

for K±
L,t(x, y), we have

K±
L (x, y) := K±

L,L−(2m−1)

=

∫ ∞

0

∫
Rn

ei
λ2m

L2m−1 ±iλRλmn+n−2m−1ω±(λr)ω±(λs)V (z)ψ(λ2m/L2m)dzdλ

where R := r+ s := |x− z|+ |z − y|. Letting φ(λ) = λmn+n−2m−1ψ(λ2m) be a modified cutoff to the

interval λ ≈ 1, we rewrite the kernel above as

Lmn+n−2m−1

∫ ∞

0

∫
Rn

ei
λ2m

L2m−1 ±iλRω±(λr)ω±(λs)V (z)φ(λ/L)dzdλ.

In what follows we have r, s = 1+ o(1) and R = 2+ o(1), this is accomplished by taking |x|, |y| small

and V (z) supported on a sufficiently small neighborhood of |z| = 1. Changing the variable λ → Lλ

we have

K±
L (x, y) = Lmn+n−2m

∫
Rn

∫ ∞

0

eiL(λ2m±λR)ω±(λLr)ω±(λLs)V (z)φ(λ)dzdλ,
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Note that the contribution of + sign above is O(L−N∥V ∥L1) by nonstationary phase since φ is smooth

and supported on the set λ ≈ 1 and |∂kλω±(λLr)| ≤ Ck for all k. For the − sign we have a critical

point at λ0 = (R/2m)
1

2m−1 ≈ 1, and hence by stationary phase we have

K−
L (x, y) = CmL

mn+n−2m− 1
2

∫
Rn

ω−(λ0Lr)ω
−(λ0Ls)φ(λ0)e

icmL(R
2 )

2m
2m−1

V (z)dz

+O(Lmn−2m− 1
2 ∥V ∥L1),

where cm = ( 1
m )

2m
2m−1 (1 − 2m). For the error term, we used the bound |ω±(λ)| ≈ ⟨λ⟩ 1−n

2 . Using the

asymptotic expansion above for ω± and slightly modifying φ, we can rewrite this as

K−
L (x, y) = CmL

mn−2m+ 1
2

∫
Rn

(rs)
1−n
2 φ(λ0)e

icmL(R
2 )

2m
2m−1

V (z)dz +O(Lmn−2m− 1
2 ∥V ∥L1),

Let

VL(z) = cos
(
cmL|z|

2m
2m−1

)
ρδ(z),

where δ ≪ 1, and ρδ is a smooth cutoff for the set |z| ∈ (1− δ, 1+ δ). We determine δ later. However,

δ ≪ 1 is fixed and we later let L→ ∞. Therefore, for sufficiently large L,

∥VL∥Cα(B(0,2)) ≈ δ−α + Lα ≈ Lα

For x, y ∈supp(fL), i.e., |x|, |y| ≤ 1
CL , we consider

KL(x, y) = K+
L (x, y)−K−

L (x, y) = O(Lmn−2m− 1
2 δ)+

Cm

2i
Lmn−2m+ 1

2

∫
Rn

(rs)
1−n
2 φ(λ0)e

icmL[(R
2 )

2m
2m−1 −|z|

2m
2m−1 ]ρδ(z)dz

+
Cm

2i
Lmn−2m+ 1

2

∫
Rn

(rs)
1−n
2 φ(λ0)e

icmL[(R
2 )

2m
2m−1 +|z|

2m
2m−1 ]ρδ(z)dz.

Note that by nonstationary phase, for all N ∈ N, the last integral is O(Lmn−2m+ 1
2−Nδ1−N ) since

|∇kρδ| ≲ δ−k. Using this with N = 1, the error terms are combined to O(Lmn−2m− 1
2 ). On the other

hand, since in the support of fL ∣∣R
2
− |z|

∣∣ ≤ 1

2
(|x|+ |y|) ≤ 1

CL
,

by choosing C in the definition of fL sufficiently large depending only on m, we see that the phase in

the first integral is o(1). Therefore, we have the following lower bound for the first integral:

Lmn−2m+ 1
2 δ.

We can conclude that there is a constant c ∈ C:

ℜ
[
cK+

L (x, y)− cK−
L (x, y)

]
≥ Lmn−2m+ 1

2 δ,
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for δ ≪ 1 fixed, L sufficiently large, and |x|, |y| ≤ 1
CL . Therefore, we have

|a1,L(VL)|
∥VL∥Cα(B(0,2))

≳ L
n+1
2 −2m−αδ → ∞

as L→ ∞ unless α ≥ n+1
2 − 2m.

3.2. The Tail of the Born Series. Here we establish that, upon sufficient iteration of the Born

series, that the tail of the Born series is bounded as t→ 0. Specifically, we show the following.

Proposition 3.1. Assume V ∈ L∞(Rn) is supported on B(0, 2), given any choice of L > CV,n,m,

where 0 < CV,n,m < ∞ is a constant depending on the size of the potential, spatial dimension and

order of the operator, there exists an M so that the tail of the Born series satisfies the following bound

sup
x,y∈Rn

∣∣∣∣ ∫ ∞

0

eitλψ(λ/L2m)λ
n(m−1)

2m (R±
0 (λ)V )MR±

V (λ)(VR±
0 (λ))

M (x, y) dλ

∣∣∣∣ ≲ 1.

We utilize the limiting absorption principle established in [4]. For fixed m,n, there are no positive

eigenvalues of H on the support of the cut-off provided we take L sufficiently large, depending only

on the size of V .

Lemma 3.2. Fix γ > 1
2 . Assume that |V (x)| ≤ M⟨x⟩−2γ , x ∈ Rn. Then, there exists a constant

C = C(n,m, γ,M) > 0 such that any λ > C cannot be an eigenvalue of H.

Proof. Assume that λ > 0 is an eigenvalue of H, then there exists 0 ̸= Ψ ∈ L2 such that

((−∆)m + V )Ψ = λΨ, ⇒ ((−∆)m − λ− iϵ)Ψ = −iϵΨ− VΨ.

Here ϵ > 0, so that λ + iϵ is in the resolvent set of H0. Acting the resolvent operator R0(λ + iϵ) on

both sides of the above expression yields

Ψ = R0(λ+ iϵ)[−iϵΨ− VΨ].

Hence,

∥Ψ∥L2,−γ ≤ ∥R0(λ+ iϵ)ϵΨ∥L2 + ∥R0(λ+ iϵ)VΨ∥L2,−γ ≲

∥∥∥∥ ϵ

|ξ|2m − λ− iϵ
Ψ̂

∥∥∥∥
L2

ξ

+ λ
1−2m
2m ∥VΨ∥L2,γ ,

where we invoked the limiting absorption principle for the free operator on the second summand.

Taking ϵ→ 0+, the dominated convergence theorem suffices to conclude the first summand vanishes.

Using the bound on V , we have ∥VΨ∥L2,γ ≤M∥Ψ∥L2,−γ , hence

∥Ψ∥L2,−γ ≲ λ
1−2m
2m M∥Ψ∥L2,−γ ≲ λ

1−2m
2m M∥Ψ∥L2,−γ .

From here, we conclude for large enough λ that ∥Ψ∥L2,−γ = 0, and have that Ψ = 0 a.e. Thus λ

cannot be an eigenvalue of H.

□
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The above suffices to allow us to use the limiting absorption principle for the class of potentials

we consider. In the statement below B(s,−s′) is the space of bounded linear operators mapping

L2,s → L2,−s′ , and assumes the lack of embedded eigenvalues in the continuous spectrum of H.

Theorem 3.3 (Theorem 3.9 in [4]). For k = 0, 1, 2, 3 . . . , let |V (x)| ≲ ⟨x⟩−β for some β > 2 + 2k,

then for s, s′ > k + 1
2 , R

(k)
V (z) ∈ B(s,−s′) is continuous for z > 0. Furthermore, we have

∥∥R(k)
V (z)

∥∥
L2,s→L2,−s′ ≲ |z|

1−2m
2m (1+k).

Note that, in particular, these bounds hold for the free resolvent, for which there are no embedded

eigenvalues, as well as for the perturbed operator when |z| is sufficiently large by Lemma 3.2.

Proof of Proposition 3.1. The proof here mirrors closely the high energy argument in [3]. Since we

need only show boundedness, the argument is straight-forward. We write M = ℓ1 + ℓ2 where ℓ1 =

⌊ n
4m⌋ + 1 is the number of iterations of the resolvent required to ensure (R±

0 V )ℓ1 is locally L2, and

ℓ2 is selected large enough to ensure that there is sufficient decay in λ using the limiting absorption

principle in Theorem 3.3. This suffices to ensure the desired integral is bounded.

Following the argument in Propositions 5.3 and 6.5 [3], we have the bound σ > 1
2 and ℓ1 = ⌊ n

4m⌋+1

we have

∥(VR+
0 )

ℓ1−1VR±
0 (λ

2m)(·, y)∥L2,σ ≲
λℓ1(

n+1
2 −2m)

⟨y⟩n−1
2

,(13)

and similarly,

∥(R+
0 V )ℓ1(λ2m)(x, ·)∥L2,σ ≲

λℓ1(
n+1
2 −2m)

⟨x⟩n−1
2

.(14)

Selecting L large enough so there are no eigenvalues on the support of the cut-off allow for iterated

use of Theorem 3.3 which yields

∥(R+
0 (λ

2m)V )ℓ2R+
V (λ

2m)(VR+
0 (λ

2m))ℓ2∥L2,σ→L2,−σ ≲ λ(2ℓ2+1)(1−2m).(15)

Combing these, we arrive at the bound

(16)

∣∣∣∣ ∫ ∞

0

eitλ
2m

ψ(λ2m/L2m)λ(n+2)m−n−1(R±
0 (λ

2m)V )MR±
V (λ

2m)(VR±
0 (λ

2m))M dλ

∣∣∣∣
≲

1

(⟨x⟩⟨y⟩)n−1
2

∫ ∞

0

ψ(λ2m/L2m)λ((n+2)m−n−1+2ℓ1(n+1−4m)+(2ℓ2+1)(1−2m)) dλ.

Having selected ℓ1 = ⌊ n
4m⌋+ 1 we selected ℓ2 ∈ N so that

ℓ2 >
1 + n(m− 1) + 2ℓ1(n+ 1− 4m)

4m− 2
.
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Thus, we may bound

|(16)| ≲ 1

(⟨x⟩⟨y⟩)n−1
2

∫ ∞

0

ψ(λ2m/L2m)λ−2 dλ ≲
∫
λ≈L

λ−2 dλ ≲ L−1.

This is uniformly bounded in x, y ∈ Rn and L > 1.

□

We note that these bounds can be shown to hold for a much larger class of potentials V , and

one can show that the tail decays in t by utilizing the oscillation in the integral. Such bounds are

interesting, but are not needed for our purpose here.

3.3. Failure of the dispersive bound for the full evolution. We now prove that the full evolution

cannot satisfy the dispersive bound, and consequently that the wave operators are not bounded on

L∞. The proof follows that in [6] for the case of m = 1, though the frequency localization allows us to

avoid many technical issues such as regularity of the threshold energies or considering larger classes

of potentials. Namely we show the following.

Proposition 3.4. Suppose that n > 3 and n > 4m− 1, ψ is a smooth cut-off to λ ≈ 1 and 0 ≤ α <

n+1
2 − 2m. There cannot exist a bound of the form

sup
t>0,L>0

t
n
2 ∥H

n(m−1)
2m eitHψ(H/L2m)Pac(H)f∥∞ ≤ C(V )∥f∥1

with C(V ) <∞ for all V ∈ Cα(B(0, 2)).

Proof. Assume such a bound can hold. Write V = θW with θ ∈ [0, 1] and W ∈ Cα(B(0, 2)). The

assumed dispersive bound implies the following holds uniformly in L > CV where CV is the constant

in the proof of Proposition 3.1 chosen to ensure there are no embedded eigenvalues on the support

of the cut-off. Taking L > CV suffices to ensure the argument for the tail holds for any choice of

0 ≤ θ ≤ 1.

sup
0<t<1,L>CV

t
n
2 |⟨H

n(m−1)
2m eitHψ(H/L2m)Pac(H)f, g⟩|

= sup
0<t<1,L>CV

mt
n
2

π

∣∣∣∣ ∫ ∞

0

eitλ
2m

λ2m−1+n(m−1)ψ(λ2m/L2m)⟨[R+
θW (λ2m)−R−

θW (λ2m)]f, g⟩ dλ
∣∣∣∣

≤ C(θ,W )∥f∥1∥g∥1.

We take both f and g to be the function fL defined above (11). Expanding the perturbed resolvent

into a Born series as in (10) allows us to express the evolution as a sum a polynomial in θ of degree

2M and the tail of the Born series. The coefficients of this polynomial depend on t, W , and L, are

defined by
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(17) ak(W,L) =
mt

n
2

πi

∫ ∞

0

eitλ
2m

λ2m−1+n(m−1)ψ(λ2m/L2m)

⟨[R+
0 (λ

2m)[WR+
0 (λ

2m)]k −R−
0 (λ

2m)[WR−
0 (λ

2m)]k]fL, fL⟩ dλ

Proposition 3.1 shows that the tail obeys the desired bound provided L is sufficiently large. It

follows that the Born series terms, the polynomial in θ, must also obey the bound as well. Writing

PL,t(θ) =

2M∑
k=0

ak(W,L)θ
k

By assumption, sup0<t<1,L>CV
|PL,t(θ)| is finite for each 0 ≤ θ ≤ 1. Hence the maximum 0 ≤ j ≤ 2M

of sup0<t<1,L>CV
|PL,t(

j
2M )| is bounded. The value of the polynomial at 2M+1 points suffices to solve

for the values of the coefficients, and allows us to conclude that each of the coefficients is bounded.

Hence, we conclude that

sup
0<t<1,L>CV

t
n
2 |a1(W,L)| ≤ C(W ) <∞.

This, however, is false in light of the estimate in subsection 3.1. Hence, the assumption is false and

such a bound cannot hold.

□

The intertwining identity (1) quickly establishes the following corollary, which is the p = ∞ state-

ment in Theorem 1.1.

Corollary 3.5. Suppose that n > 3 and n > 2m. Then for any α < n+1
2 − 2m, there exists a real-

valued compactly supported potential V in Cα(Rn) for which the wave operators W± do not extend to

bounded operators on L∞(Rn).

4. Extension to Lp

In this section we complete the proof of Theorem 1.1 to consider the full range of p on which

our counterexample to Lp boundedness applies. The argument presented in the previous section can

be adapted to show the failure of dispersive bounds from Lp to Lp′
for 1 ≤ p ≤ 2, which implies

unboundedness of the wave operators on Lp′
. With ψ the same cut-off to frequencies λ ≈ 1, by

Corollary 2.2 the free evolution satisfies the bound∥∥∥∥H n(m−1)
2m ( 2

p−1)

0 eitH0ψ(H0/L
2m)

∥∥∥∥
p→p′

≲ |t|
n
2 (1− 2

p ).

Here we show that the dispersive bound for the perturbed operator fails by showing that one cannot

have a bound of the form

sup
L>0,t>0

t
n
2 (1− 2

p )

∣∣∣∣ 〈H n(m−1)
2m ( 2

p−1)eitHψ(H/L2m)f, g
〉 ∣∣∣∣ ≤ C(V )(18)
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for f, g unit vectors in Lp. As in the previous section, we’ll select f = g to be functions that

concentrate at zero as L → ∞. Namely, we’ll use fL,p(x) = (CL)
n
p f(x(CL)) where f is the Lp-

normalized characteristice function of B(0, 1). The argument proceeds analogously, we show that the

first term of the Born series grows too fast as t→ 0+ and the tail remains bounded.

For the first term of the Born series, we note that we now consider the difference of kernels

K±
L,p,t(x, y)

=

∫ ∞

0

∫
Rn

eitλ
2m

λ2m−1λn(m−1)( 2
p−1)R±

0 (λ
2m)(x, z)V (z)R±

0 (λ
2m)(z, y)ψ(λ2m/L2m)dz dλ.

The oscillatory integral argument applies ver batim, there are three changes. Due to the different

power of λ, the λ 7→ λL rescaling produces a power of n(m − 1)( 2p − 1) on L. The time factor

in front of the integral t
n
2 (1− 2

p ) becomes Lnm−n
2 +n

p − 2mn
p using the scaling t = L−(2m−1). The final

change comes from the fact that the positive functions fL,p are integrated directly, we have ∥fL,p∥1 =

(CL)n/p−n∥f∥1 ≈ Ln/p−n∥f∥p since f is a normalized characteristic function of B(0, 1).

Hence we consider the linear operator

a1,p,L(V ) = Lnm−n
2 +n

p − 2mn
p

∫
Rn×Rn

KL,L−(2m−1)(x, y)fL,p(x)fL,p(y)dxdy.

With the rescaling accounted for, the stationary phase arguments apply directly to show that there

is a Cp ∈ C so that

ℜ
[
CpK

+
L,p(x, y)− CpK

−
L,p(x, y)

]
≳ L

n
p + 1−n

2 −2mδ,

for δ ≪ 1 fixed, and for L sufficiently large and |x|, |y| ≪ 1
L . Therefore, we have

|a1,p,L(VL)|
∥VL∥Cα(B(0,2))

≳ L
n
p + 1−n

2 −2m−αδ → ∞

as L→ ∞ unless α ≥ n
p + 1−n

2 − 2m, provided p < 2n
4m+n−1 to ensure the right side of the inequality

is positive.

For the tail of the Born series, the extension is straight-forward. By selecting M appropriately

large depending on the parameters j, k below, the proof of Proposition 3.1 can be adapted to show

sup
x,y∈Rn

∣∣∣∣ ∫ ∞

0

eitλψ(λ/L2m)λk(R±
0 (λ)V )MR±

V (λ)(VR±
0 (λ))

M (x, y) dλ

∣∣∣∣ ≲ L−j ,

for any choice of j, k ∈ N. Again using the Lp-normalized function fL,p we have ∥fL,p∥1 ≈ Ln/p−n∥f∥p.

Hence, we have∣∣∣∣ ∫ ∞

0

eitλψ(λ/L2m)λk⟨(R±
0 (λ)V )MR±

V (λ)(VR±
0 (λ))

M (x, y)fL,p, fL,p⟩ dλ
∣∣∣∣

≲ sup
x,y∈Rn

∣∣∣∣ ∫ ∞

0

eitλψ(λ/L2m)λk(R±
0 (λ)V )MR±

V (λ)(VR±
0 (λ))

M (x, y) dλ

∣∣∣∣∥fL,p∥21 ≲ L−1.
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uniformly in L > Cn,m,V , where Cn,m,V is the constant chosen so that there are no embedded eigen-

values on the support of the cut-off.

The polynomial argument now applies with coefficients defined by

(19) ak(W,L, p) =
mt

n
2 ( 2

p−1)

πi

∫ ∞

0

eitλ
2m

λ2m−1+n(m−1)( 2
p−1)ψ(λ2m/L2m)

⟨[R+
0 (λ

2m)[−WR+
0 (λ

2m)]k −R−
0 (λ

2m)[−WR−
0 (λ

2m)]k]fL,p, fL,p⟩ dλ.

Hence, we are able to conclude that the Lp → Lp′
dispersive bound in (18) fails to hold for all

V ∈ Cα(B(0, 2)) if 0 ≤ α < n
p + 1−n

2 − 2m. By appealing to the intertwining identity (1), this shows

that the wave operators are unbounded on Lq for 2n
n−4m+1 < q ≤ ∞.

A consequence of these bounds are results that are, to the best of the authors’ knowledge, new for

the classical m = 1 Schrödinger evolution. Namely, with p′ the Hölder conjugate of p we have the

following.

Corollary 4.1. Suppose that n > 3 and 1 ≤ p < 2n
n+3 . Then for any 0 ≤ α < n

p − n+3
2 there exists a

real-valued compactly supported potential V in Cα(Rn) for which the dispersive bound∥∥∥∥eit(−∆+V )Pac(−∆+ V )

∥∥∥∥
p→p′

≲ |t|−
n
2 ( 2

p−1)

fails.

In particular, the wave operatorsW± do not extend to bounded operators on Lp′
(Rn). Consequently,

we conclude that for all 2n
n−3 < q ≤ ∞ there exist a compactly supported continuous potential for which

the wave operators are unbounded on Lq(Rn).

Proof. Assuming that the Lp → Lp′ bound in the corollary holds and using Theorem 2.1 in [9] for

the uniform Lp boundedness of ψ(H/L) we conclude that the bound (18) should hold, which is a

contradiction. □
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[2] M. B. Erdoğan, and W. R. Green, Dispersive estimates for the Schrödinger equation for C
n−3
2 potentials in odd

dimensions, Int. Math. Res. Notices 2010:13, 2532–2565.
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16 M. B. ERDOĞAN, W. R. GREEN

[6] M. Goldberg, and M. Visan. A Counterexample to Dispersive Estimates. Comm. Math. Phys. 266 (2006), no. 1,

211-238.
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