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We want to explore some properties of higher degree polynomials, today. In general, higher
degree polynomials allow more flexibility as more data is required to specify a higher degree
polynomial. Higher degree polynomials also allow more complicated basic curves as curve
elements. Quadratic polynomials are basically only parabolas (with the degenerate case
of straight lines). Cubic polynomials allow a greater variety of curves, and allows self-
intersection of the curves. Increasing the degree past cubic enlarges the basic shapes further.
Higher order polynomials also allow easier construction of piecewise curves that have higher
order degree smoothness. In particular, today, we want to extend the ideas involved in cubic
Hermite interpolation to quintic Hermite interpolation.

9.1 A Review of Cubic Hermite Interpolation

To construct a cubic curve by Hermite interpolation, we provide two points that the curve
must pass through and then the tangent vectors at these two points (the value of the first
derivative (velocity) at these points). We note that this a symmetric way of providing data,
each point is treated in exactly the same manner.
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Figure 1: Cubic Hermite Curve Data and Cubic Hermite Curve

To create the cubic curve possessing this data, we look for a curve c(t) = a0 + a1 t + a2 t2 +
a3 t3 that satisfies

c(0) = p0

c′(0) = v0

and
c(1) = p1

c′(1) = v1
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This means solving the system of equations

p0 = a0

v0 = a1

p1 = a0 + a1 + a2 + a3

v1 = a1 + 2a2 + 3a3

which gives
a0 = p0

a1 = v0

a2 = 3p1 − 3p0 − 2v0)− v1a3 = −2p1 + 2p0 + v0 + v1

Rearranging terms, this yields the curve as

c(t) = (1− 3t2 + 2t3)p0 + (t− 2t2 + t3)v0 + (−t2 + t3)v1 + (3t2 − 2t3)p1

which may be written in the basis function form

c(t) = H3
0 (t)p0 + H3

1 (t)v0 + H3
2 (t)v1 + H3

3 (t)p1

where
H3

0 (t) = 1− 3t2 + 2t3

H3
1 (t) = t− 2t2 + t3

H3
2 (t) = −t2 + t3

H3
3 (t) = 3t2 − 2t3

The basis functions maybe obtained without using algebra to solve for the coefficients and
then rearranging terms, but by specifying the properties desired of the basis functions.

Starting with the basis function representation of the curve

c(t) = H3
0 (t)p0 + H3

1 (t)v0 + H3
2 (t)v1 + H3

3 (t)p1,

we list out the properties desired, that is

c(0) = p0 = H3
0 (0)p0 + H3

1 (0)v0 + H3
2 (0)v1 + H3

3 (0)p1

c′(0) = v0 = (H3
0 )′(0)p0 + (H3

1 )′(0)v0 + (H3
2 )′(0)v1 + (H3

3 )′(0)p1

c(1) = p1 = H3
0 (1)p0 + H3

1 (1)v0 + H3
2 (1)v1 + H3

3 (1)p1

c′(1) = v1 = (H3
0 )′(1)p0 + (H3

1 )′(1)v0 + (H3
2 )′(1)v1 + (H3

3 )′(1)p1

The independence of the data (that there is no relations between the data and we must
obtain the same functions independent of the data provided) means that we must have in
each of the equations above one value for a basis function 1 and the others 0. Thus, we need
to find functions that satisfy

H3
0 (0) = 1

(H3
0 )′(0) = 0

H3
0 (1) = 0

(H3
0 )′(1) = 0

,

H3
1 (0) = 0

(H3
1 )′(0) = 1

H3
1 (1) = 0

(H3
1 )′(1) = 0

,

H3
2 (0) = 0

(H3
2 )′(0) = 0

H3
2 (1) = 0

(H3
2 )′(1) = 1

, and

H3
3 (0) = 0

(H3
3 )′(0) = 0

H3
3 (1) = 1

(H3
3 )′(1) = 0

.
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Such functions are given by
H3

0 (t) = 1− 3t2 + 2t3

H3
1 (t) = t− 2t2 + t3

H3
2 (t) = −t2 + t3

H3
3 (t) = 3t2 − 2t3

This is just an alternate method for finding the basis function, without recourse to solving a
particular system of equations, but rather specifying what we desire to be the representation
of the model and then determining the representation. In linear algebra, this is similar to
the process of constructing a change of basis. This point of view is sometimes useful in
geometric modelling, especially when converting between modelling methods.
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Figure 2: Cubic Hermite Basis Functions H3
i (t)

9.2 Quintic Hermite Interpolation

As a direct generalization of cubic Hermite interpolation, we will consider a quintic Hermite
interpolation. The quintic Hermite interpolation problem is to find a curve c(t) that has
c(0) = p0, c′(0) = v0, c′′(0) = a0, c(1) = p1, c′(1) = v1 and c′′(1) = a1. The simplest
solution involves a quintic (5th order) polynomial curve.

Solving this interpolation problem is accomplished in the same manner as for the cubic
Hermite interpolation problem. We seek general quintic

c(t) = b0 + b1 t + b2 t2 + · · ·+ b5 t5

and write the equations for the c(0) = p0, c′(0) = v0, c′′(0) = a0, c(1) = p1, c′(1) = v1
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and c′′(1) = a1:
p0 = b0

v0 = b1

a0 = b2

p1 = b0 + b1 + b2 + b3 + b4 + b5

v1 = b1 + 2b2 + 3b3 + 4b4 + 5b5

a1 = 2b2 + 6b3 + 12b4 + 20b5

An alternate method is to use the basis function representation,

c(t) = H5
0 (t)p0 + H5

1 (t)v0 + H5
2 (t)a0 + H5

3 (t)a1 + H5
4 (t)v1 + H5

5 (t)p1

and determine the basis functions H5
i (t). Symmetry considerations, that is the same curve

geometrically should arise with the data p1, −v1, a1, p0, −v0 and a0, imply that H0(t) =
H5(1 − t), H1(t) = −H4(1 − t), H2(t) = H3(1 − t). Therefore we need to find quintic
polynomials satisfying

H5
0 (0) = 1

(H5
0 )′(0) = 0

(H5
0 )′′(0) = 0

H5
0 (1) = 0

(H5
0 )′(1) = 0

(H5
0 )′′(1) = 0

,

H5
1 (0) = 0

(H5
1 )′(0) = 1

(H5
1 )′′(0) = 0

H5
1 (1) = 0

(H5
1 )′(1) = 0

(H5
1 )′′(1) = 0

,

H3
2 (0) = 0

(H3
2 )′(0) = 0

(H3
2 )′′(0) = 1

H3
2 (1) = 0

(H3
2 )′(1) = 0

(H3
2 )′′(1) = 0

Either of these two methods yields the basis function

H5
0 (t) = 1− 10t3 + 15t4 − 6t5

H5
1 (t) = t− 6t3 + 8t4 − 3t5

H5
2 (t) =

1
2

t2 − 3
2

t3 +
3
2

t4 − 1
2

t5

H5
3 (t) =

1
2

t3 − t4 +
1
2

t5

H5
4 (t) = −4t3 + 7t4 − 3t5

H5
5 (t) = 10t3 − 15t4 + 6t5

which have graphs on the following page
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Figure 3: Quintic Hermite Basis Functions H5
0 (t) and H5

5 (t)
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Figure 4: Quintic Hermite Basis Functions H5
1 (t) and H5

4 (t)
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Figure 5: Quintic Hermite Basis Functions H5
2 (t) and H5

3 (t)

Note that these basis function possess the same type of symmetries as the cubic Hermite
basis functions H3

0 (t), H3
1 (t), H3

2 (t), H3
3 (t).
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We note that creating a quintic Hermite curve does not admit the elegant geometrical solu-
tion that the cubic Hermite curve did. The reason for this is simple there is more information
to supply at each point. We can still view the geometric construction as supplying six points
{qi} with i = 0, 1, 2, · · · , 5. The first point q0 defines the first point p0 to be interpolated,
the second point q1 is used to define the tangent vector v0 at p0 as v0 = q1 − q0, and the
third point q2 is used to define the acceleration vector a0 as a0 = q2 − q0. The next set of
three points defines the corresponding information at the second point to be interpolated.
The point q3 defines the second point p1 to be interpolated, the point q4 is used to define
the tangent vector v1 at p1 as v1 = q4 − q3, and the last point q5 is used to define the
acceleration vector a1 at p1 as a1 = q5 − q3. This is not as elegant a geometric solution as
you end up supplying two vectors at each point, see diagrams below.
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Figure 6:

Quintic Hermite interpolation could arise in motion planning problems where to control the
motion one specifies the position, velocity and acceleration at several times. It is worth
noting that typically there are other constraints in solving this type of problem. These
constraints could restrict the area where the curve may lie, for instance in specifying the
path needed for a robot to navigate a room there may be obstacles to avoid (see diagram
below). This type of constraint restricts the possible points, velocity vectors and acceleration
vectors that can be prescribed. Once, this constraint is satisfied typically one also constraints
on the permissable velocity and acceleration, meaning that the magnitude of the velocity
and acceleration may have restrictions.

This type of interpolation may also be used in animation where specifies the velocity and
acceleration of the object in order to movement of an object. At each control point defining
the object, one would describe a velocity and acceleration vector describing the movement of
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that control point. The animation is accomplished through defining a sequence of position,
velocity and acceleration vectors. For instance, the motion of the parabola below is given by
the control points p0(t), p1(t), p2(t) whose paths are specified by quintic Hermite curves.
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Figure 7: Animation of Parabola c(s, t) = (1− s)2p0(t) + 2s(1− s)p1(t) + s2 p2(t)

We note like cubic Hermite curves the quintic Hermite curves can be used to construct
smooth piecewise defined curves. The quintic construction will ensure the curves are para-
metrically smooth of order two C2, that is twice differentiable. This means that the acceler-
ation vector is continuous. This is an advantage for motion planning and control movement
as continuous acceleration is preferable to the highly jerky acceleration provided by noncon-
tinuous acceleration. In fact, smooth acceleration is even more preferable, which requires
even higher degree polynomials or more sophisticated methods.

Figure 8: Piecewise Quintic Curve
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9.3 Exercises

1. (Computational) Find the Hermite data for the quintic curve that passes through
p0 = [1, 0], p1 = [2, 0], p2 = [2, 2], p3 = [3, 1], p4 = [3, 2], p5 = [4, 1] using equal length
parameter spacing, that is t0 = 0, t1 = 0.2, t2 = 0.4, · · · , t5 = 1.0.

2. (Interactive) Complete the interactive exercises associated with the Quintic Hermite
Polynomial Applet.

3. (Thought) How do the basis functions for cubic Hermite curves and quintic Hermite
change if instead of the curve passing through desired points at times 0 and 1, we use
arbitrary times t = t0 and t = t1? HINT: Use the chain rule to recast the problem in
terms of τ = 0 and τ = 1 using the substitution τ = (t− t0)/(t1 − t0).

4. (Computational and Thought) Sketch the piecewise quintic Hermite polynomial curve
c(t) that has given values for c(ti), c′(ti), c′′(ti).
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Figure 9: Sketch the piecewise quintic curve with the data

5. (Computational Challenge) Find the acceleration a that minimizes the distance trav-
elled for a particle following the quintic Hermite polynomial curve c(t) with c(0) =
[1, 0], c′(0) = [1, 1], c′′(0) = a, c(1) = [2, 2], c′(1) = [1,−1], c′′(0) = [0, 0].


