1. Let $E \subset(-\pi, \pi)$ with $m(E)>0$. Fix $\delta>0$. Show that there are at most finitely many integers n such that $\inf _{x \in E} \sin (n x) \geq \delta$. Hint: Bessel.
2. Show that for any fixed function $g \in L^{2}(0, \pi)$ we have

$$
\lim _{k \rightarrow \infty} \int_{0}^{\pi} g(x) \sin (k x) d x=0
$$

3. Let H be a Hilbert space (say over the reals, for simplicity), f an element of H, and f_{k} a sequence in H with the property that $\left\langle f_{k}, g\right\rangle$ converges to $<f, g>$ in \mathbb{R} for each fixed $g \in H$.
(a) Show that f_{k} need not converge to anything in H. Hint: The last problem.
(b) Show that if in addition to $<f_{k}, g>\rightarrow<f, g>$ for each g we also have $\left\|f_{k}\right\| \rightarrow\|f\|$, then $f_{k} \rightarrow f$ in H.
