- 1. Let $E \subset (-\pi, \pi)$ with m(E) > 0. Fix $\delta > 0$. Show that there are at most finitely many integers n such that $\inf_{x \in E} \sin(nx) \geq \delta$. Hint: Bessel.
- 2. Show that for any fixed function $g \in L^2(0,\pi)$ we have

$$\lim_{k \to \infty} \int_0^{\pi} g(x) \sin(kx) \, dx = 0.$$

- 3. Let H be a Hilbert space (say over the reals, for simplicity), f an element of H, and f_k a sequence in H with the property that $\langle f_k, g \rangle$ converges to $\langle f, g \rangle$ in \mathbb{R} for each fixed $g \in H$.
 - (a) Show that f_k need not converge to anything in H. Hint: The last problem.
 - (b) Show that if in addition to $\langle f_k, g \rangle \rightarrow \langle f, g \rangle$ for each g we also have $||f_k|| \rightarrow ||f||$, then $f_k \rightarrow f$ in H.