Homework 5

MA430
As always, give full justification for your answers!

1. Read as much of Chapter 4 as I've given you!
2. Sketch (by hand) what Figure 4.1 in the text would look like if $p=0$.
3. Solve the problem of minimizing

$$
\phi\left(x_{1}, x_{2}\right)=\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}
$$

subject to the constraint $x_{1}-3 x_{2}=3$, for the cases $p=0,1 / 2,1,2$, and ∞. Interpret the case $p=0$ as the sparsity of $\left(x_{1}, x_{2}\right)$ and the case $p=\infty$ as the usual infinity norm. Use Maple or Matlab and plots all you want - a visual minimizer is fine. It's probably easiest to use the constraint to eliminate one variable, minimize in the other.
4. Repeat the last problem but for

$$
\phi\left(x_{1}, x_{2}, x_{3}\right)=\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\left|x_{3}\right|^{p}
$$

with the constraint $x_{1}-x_{2}+x_{3}=4$.
5. Repeat the last problem but add a second constraint $x_{1}+x_{2}+2 x_{3}=4$.
6. Convert the problem of minimizing $\|\mathbf{x}\|_{1}$ (assume $\mathbf{x} \in \mathbb{R}^{3}$) with constraints $x_{1}-x_{2}-x_{3}=-2$ and $x_{1}+x_{2}+3 x_{3}=2$ into a linear program using BOTH methods in the notes.
7. Solve the last problem by using the l1eq-pd.m routine.
8. Use the lleq_pd.m routine to solve problems 1 and 2 on Homework 4 (everywhere MP or OMP is used, just do BP).

