Homework 4

MA430
As always, give full justification for your answers!

1. Suppose I have 10 marbles, nominal mass 10 grams each, but a few marbles may be defective and have mass that's slightly off. Let x_{i} denote the deviation of the i th marble from nominal. I weigh a subset consisting of marbles $\{3,6,10\}$ and get 30.13 . I can conclude that

$$
x_{3}+x_{6}+x_{10}=0.13
$$

(the set had mass 30.13 grams, had 3 marbles, an excess of 0.13 grams). Suppose I weigh additional subsets consisting of marbles $\{1,4,6,7\}$, $\{1,2,8,9,10\},\{2,3,4,5,8,10\},\{1,2,5,6,7\}$, and $\{3,7,10\}$, and obtain masses $40.00,49.63,59.76,50.00$ and 30.00 grams, respectively.
(a) Write out the other five relevant equations and formulate this as a system $\mathbf{A x}=\mathbf{b}$, where \mathbf{A} is 6×10.
(b) What is coherence of \mathbf{A} ? What sparsity solutions are guaranteed to be unique?
(c) Find a minimal norm solution to $\mathbf{A x}=\mathbf{b}$. What is its sparsity?
(d) Run Matching Pursuit on the system; limit the number of iterations to 3 , and use tolerance 1.0×10^{-5}. What is the result? Is the fit to the data perfect?
(e) Run Orthogonal Matching Pursuit on the system; limit the number of iterations to 3 , and use tolerance 1.0×10^{-5}. What is the result? Is the fit to the data perfect?
2. Load in the matrix in the file Amat.mat; it's a 20×100 matrix, standard normal random entries.
(a) Compute the coherence of \mathbf{A}. What sparsity solutions to $\mathbf{A x}=\mathbf{b}$ are assured to be unique?
(b) Let x^{*} be the 3 -sparse vector with nonzero components $x_{13}^{*}=$ $1.0, x_{33}^{*}=-0.82, x_{56}^{*}=0.94$. Synthesize data $\mathbf{b}=\mathbf{A x} \mathbf{x}^{*}$. Then run MP on $\mathbf{A x}=\mathbf{b}$ using 10 iterations max to try to recover \mathbf{x}^{*}, with tolerance 0.1 (since $\|\mathbf{b}\|_{2} \approx 6.83$, this should fit \mathbf{b} pretty well.)

What are the nonzero components in your estimate? Make a plot of the solution vector.
What is the percentage error, as $\left\|\mathbf{x}-\mathbf{x}^{*}\right\|_{2} /\left\|\mathbf{x}^{*}\right\|_{2}$? How many iterations did MP actually run?
(c) Repeat the last problem with OMP.
(d) Repeat the last problem using the minimum norm solution.
(e) Suppose the data vector \mathbf{b} is a bit noisy. Add noise to \mathbf{b} as

$$
\begin{aligned}
& \mathrm{e}=0.1 * \operatorname{norm}(\mathrm{~b}) / \operatorname{sqrt}(20) * \operatorname{randn}(\operatorname{size}(\mathrm{~b})) \\
& \mathrm{b}=\mathrm{b}+\mathrm{e}
\end{aligned}
$$

This adds noise to \mathbf{b} at about a 10 percent level, in that $\|\mathbf{e}\|_{2} \approx$ $0.1\|\mathbf{b}\|_{2}$, on average. Repeat the recovery of \mathbf{x} using MP and OMP, same parameters and tolerances, and plot the results and COMMENT.
(f) Suppose the solution isn't really 3-sparse, but has small additional components; in fact, maybe ALL of the components are nonzero. Take the original \mathbf{x}^{*} that had 3 big components and add

$$
\mathrm{x}=\mathrm{x}+0.01 * \operatorname{randn}(\operatorname{size}(\mathrm{x}))
$$

so all components of \mathbf{x}^{*} will be in the range of ± 0.02, except for the three large ones. Then generate data $\mathbf{b}=\mathbf{A x} \mathbf{x}^{*}$, don't add noise to \mathbf{b}, though, and recover \mathbf{x}^{*} with MP and OMP, same tolerances as above. Plot the results and COMMENT.
3. Suppose \mathbf{A} is a $2 \times n$ matrix with the restriction that all entries in A must have nonnegative components. What is the smallest possible coherence that A can have (as a function of n)? Hint: mimic the argument the argument from the last homework, except now the column vectors \mathbf{a}_{i} of \mathbf{A} must lie in the first quadrant.
Then make up 1000 matrices of dimension 2×4 (nonnegative entries), compute the coherence of each, and find the minimum and median value for $\mu(\mathbf{A})$ for your 1000 matrices.
4. Make up a random 100×1000 matrix in Matlab (use $A=\operatorname{randn}(100,1000) ;$).

Compute the coherence of \mathbf{A}. What sparsity of solutions are guaranteed to be unique and recoverable with OMP?

Make up a "true" solution $\mathbf{x}^{*} \in \mathbb{R}^{1000}$ with components $x_{i}^{*}=i$ for $1 \leq i \leq 10$, all other $x_{i}^{*}=0$. Synthesize data $\mathbf{b}=\mathbf{A} \mathbf{x}^{*}$. Then try to recover \mathbf{x}^{*} from \mathbf{A} and \mathbf{b} using both MP and OMP. In each case use at most 50 iterations, tolerance 1.0×10^{-6}.
Comment!

