Homework 3

MA430
As always, give full justification for your answers!

1. Read Sections 3.1 to 3.5 in the text.
2. Let $\mathbf{x}=<-2,0,1,3,0,0>$ be a vector in \mathbb{R}^{6}.
(a) Is $\mathbf{x} 1$-sparse?, 2 -sparse? 3 -sparse?
(b) $C o m p u t e \operatorname{supp}(\mathbf{x})$ and $\|\mathbf{x}\|_{0}$.
(c) If $T=\{2,3,5\}$, what is \mathbf{x}_{T} ?
3. Let \mathbf{x} be as in the last problem, but take $T=\operatorname{supp}(\mathbf{x})$. Let

$$
\mathbf{A}=\left[\begin{array}{rrrrrr}
1 & 1 & 1 & 1 & -1 & -1 \\
0 & 2 & 2 & -3 & 1 & 4
\end{array}\right]
$$

Compute \mathbf{A}_{T} and \mathbf{x}_{T}. Verify that $\mathbf{A x}=\mathbf{A}_{T} \mathbf{x}_{T}$!
4. Let

$$
\mathbf{A}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-1 & 2 & -2 & 1
\end{array}\right] .
$$

Show that $N(\mathbf{A})$ contains no (nonzero) 2-sparse vectors. You can do this by showing that any vector of the form $\mathbf{x}=<x_{1}, x_{2}, 0,0>$ that satisfies $\mathbf{A x}=\mathbf{0}$ must be $\mathbf{x}=\mathbf{0}$. Then try $\mathbf{x}=<x_{1}, 0, x_{3}, 0>$, then $\mathbf{x}=<x_{1}, 0,0, x_{4}>$, etc. (six possible combinations). Use Maple. Still tedious, isn't it?
5. Suppose I have 10 marbles, nominal mass 10 grams each, but a few marbles may be defective and have mass that's slightly off. Let x_{i} denote the deviation of the i th marble from nominal. I weigh a subset consisting of marbles $\{3,6,10\}$ and get 30.13 . I can conclude that

$$
x_{3}+x_{6}+x_{10}=0.13
$$

(the set had mass 30.13 grams, had 3 marbles, an excess of 0.13 grams). Suppose I weigh additional subsets consisting of marbles $\{1,4,6,7\}$, $\{1,2,8,9,10\},\{2,3,4,5,8,10\},\{1,2,5,6,7\}$, and $\{3,7,10\}$, and obtain masses $40.00,49.63,59.76,50.00$ and 30.00 grams, respectively.
(a) Write out the other five relevant equations and formulate this as a system $\mathbf{A x}=\mathbf{b}$, where \mathbf{A} is 6×10.
(b) What is coherence of \mathbf{A} ? What sparsity solutions are guaranteed to be unique?
(c) Find a minimal norm solution to $\mathbf{A x}=\mathbf{b}$. What is its sparsity?
6. Make up 100 random matrices with standard normal random variables as entries (use either Maple or Matlab, I'll supply some template code) of size $m \times n$ for the values of m and n listed below. In each case compute the average coherence of the matrices.

m	n	ave coherence
5	10	
5	20	
5	100	
10	10	
10	20	
10	50	
20	50	

What is the general behavior of the coherence with respect to m and n ? Does that make sense?
7. Make up a 2×4 matrix \mathbf{A} with the smallest possible coherence. Hint: coherence is is a measure of the "angle" between the columns of A, so think geometrically. What is the coherence your matrix?

