Homework 2

MA430
As always, give full justification for your answers!

1. The Cauchy-Schwarz inequality states that $|<\mathbf{v}, \mathbf{w}>| \leq\|\mathbf{v}\|\|\mathbf{w}\|$ for any inner product and associated norm.
(a) Suppose that in fact $\mathbf{v}=k \mathbf{w}$ for some constant k (so \mathbf{v} and \mathbf{w} are parallel). Show that equality is attained, i.e., $|<\mathbf{v}, \mathbf{w}\rangle \mid=$ $\|\mathrm{v}\|\|\mathrm{w}\|$.
(b) Now for the converse: suppose that equality is attained in CauchySchwarz. Show that $\mathbf{v}=k \mathbf{w}$ for some constant k. Follow these steps.
i. Nothing to prove yet, just recall from Calc 3 that given any vectors \mathbf{v} and \mathbf{w} we can write

$$
\begin{equation*}
\mathbf{v}=\mathbf{v}_{\|}+\mathbf{r} \tag{1}
\end{equation*}
$$

where $\mathbf{v}_{\|}$is parallel to \mathbf{w} and \mathbf{r} is orthogonal to \mathbf{w}. In fact, this can be done by taking $\mathbf{v}_{\|}=k \mathbf{w}$ where $k=<\mathbf{v}, \mathbf{w}>/\|\mathbf{w}\|^{2}$; then $\mathbf{r}=\mathbf{v}-k \mathbf{w}$ is orthogonal to \mathbf{w} (easy to check).
ii. Use (1) to show that

$$
\begin{equation*}
\|\mathbf{v}\|^{2}=k^{2}\|\mathbf{w}\|^{2}+\|\mathbf{r}\|^{2} . \tag{2}
\end{equation*}
$$

Hint: $\|\mathbf{v}\|^{2}=<\mathbf{v}, \mathbf{v}>$.
iii. Use (1) to show that

$$
\begin{equation*}
\left|<\mathbf{v}, \mathbf{w}>\left|=|k|\|\mathbf{w}\|^{2} .\right.\right. \tag{3}
\end{equation*}
$$

iv. Use the assumption that $|<\mathbf{v}, \mathbf{w}\rangle \mid=\|\mathbf{v}\|\|\mathbf{w}\|$ use (3) to show that $\|\mathbf{v}\|=|k|\|\mathbf{w}\|$ and then combine this with (2) to conclude that $\mathbf{r}=\mathbf{0}$. How does this show what we want?
2. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ where $\mathbf{v}_{1}=(1,1,0), \mathbf{v}_{2}=(-1,1,1)$, and $\mathbf{v}_{3}=$ $(1,-1,2)$ are vectors in \mathbb{R}^{3}.
a. Verify that S is orthogonal with respect to the usual inner product. This shows S must be a basis for \mathbb{R}^{3}.
b. Write the vector $\mathbf{w}=(3,4,5)$ as a linear combination of the basis vectors in S. Verify that the linear combination you obtain actually reproduces \mathbf{w} !
c. Rescale the vectors in S to unit length to produce an equivalent set S^{\prime} of orthonormal vectors.
d. Write the vector $\mathbf{w}=(3,4,5)$ as a linear combination of the basis vectors in S^{\prime}.
3. There are infinitely many other inner products on \mathbb{R}^{n} besides the standard dot product, and they can be quite useful too.
Let $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathbb{R}^{n}$. Suppose that $d_{k}>0$ for $1 \leq k \leq n$.
a. Let $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ be vectors in \mathbb{R}^{n}. Show that the function

$$
(\mathbf{v}, \mathbf{w})_{d}=\sum_{k=1}^{n} d_{k} v_{k} w_{k}
$$

defines an inner product on \mathbb{R}^{n}. Write out the corresponding norm.
b. Let $\mathbf{d}=(1,5)$ in \mathbb{R}^{2}, and let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ with $\mathbf{v}_{1}=(2,1), \mathbf{v}_{2}=$ $(5,-2)$. Show that S is orthogonal with respect to the $(,)_{d}$ inner product.
c. Find the length of each vector in S with respect to the norm induced by this inner product.
d. Write the vector $\mathbf{w}=(-2,5)$ as a linear combination of the basis vectors in S. Verify that the linear combination you obtain actually reproduces \mathbf{w} !
4. Suppose V is a vector space over \mathbb{R} with an inner product and with a norm $\|\mathbf{v}\|=\sqrt{(\mathbf{v}, \mathbf{v})}$ that comes from the inner product.
a. Show that this norm must satisfy the parallelogram identity

$$
2\|\mathbf{u}\|^{2}+2\|\mathbf{v}\|^{2}=\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}
$$

b. Let $\mathbf{v}=(2,5)$ and $\mathbf{w}=(3,1)$. Compute each of $\|\mathbf{v}\|_{\infty},\|\mathbf{w}\|_{\infty}, \| \mathbf{v}+$ $\mathbf{w} \|_{\infty}$, and $\|\mathbf{v}-\mathbf{w}\|_{\infty}$, and verify that the parallelogram identity
from part (a) does not hold. Hence the supremum norm $\|\cdot\|_{\infty}$ cannot come from an inner product. (Actually, almost any choice for \mathbf{v} and \mathbf{w} will work.)
c. Repeat part (b) with the ℓ^{1} norm $\|\cdot\|_{1}$.
5. Let

$$
\mathbf{A}=\left[\begin{array}{rrrr}
1 & 2 & 0 & 3 \\
-2 & -1 & 4 & 1
\end{array}\right]
$$

(a) Find a basis for $N(\mathbf{A})$. Use the Matlab null command.
(b) Find a basis for $R\left(\mathbf{A}^{T}\right)$. Use the Matlab orth command (it computes not just a basis for the column space, but an orthonormal basis!) Alternatively, note that the columns of \mathbf{A}^{T} are themselves a basis for the column space!
(c) Verify that every basis vector for $N(\mathbf{A})$ is orthogonal to every basis vector for $R\left(\mathbf{A}^{T}\right)$. Thus any vector in $N(\mathbf{A})$ is orthogonal to every vector in $R\left(\mathbf{A}^{T}\right)$ and vice-versa, i.e., $N(\mathbf{A})=R\left(\mathbf{A}^{T}\right)^{\perp}$.
6. Let V be the subspace of \mathbb{R}^{3} with basis $\mathbf{a}_{1}=(1,0,0), \mathbf{a}_{2}=(0,1,0)$. Compute the projection of an arbitrary point (a, b, c) in \mathbb{R}^{3} onto P. Then slap your head and say "doh"! Then project (a, b, c) onto V^{\perp}, the orthogonal complement of V. Slap your head again.
7. Repeat the last problem with subspace V spanned by $\mathbf{a}_{1}=(1,1,3)$ and $\mathbf{a}_{2}=(-1,0,4)$. Probably don't need to slap your head this time.
8. Find the least squares solutions \mathbf{x} to the overdetermined system

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & -1 & 1 \\
2 & 3 & -4 \\
1 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
2 \\
0 \\
-1
\end{array}\right]
$$

9. Find the minimal norm solution to the underdetermined system

$$
\left[\begin{array}{rrrrr}
1 & 2 & -1 & 0 & 4 \\
0 & 2 & 1 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

Verify that $\mathbf{x}=\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}\right]^{T}$ is the sparsest possible solution to this system. Is it the minimal norm solution?

