Homework 1

MA430

As always, give full justification for your answers!

1. Show that $\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}$ (assuming \mathbf{A} is invertible). In particular, \mathbf{A}^{T} is invertible if \mathbf{A} is invertible. Hint: This is almost a one-liner, if you can see through the smoke. Here are the steps-you provide the justification for each step:

$$
\begin{aligned}
\left(\mathbf{A}^{-1}\right)^{T} \mathbf{A}^{T} & =\left(\mathbf{A} \mathbf{A}^{-1}\right)^{T} \\
& =\mathbf{I}^{T} \\
& =\mathbf{I} .
\end{aligned}
$$

Therefore $\left(\mathbf{A}^{T}\right)^{-1}$ is $\left(\mathbf{A}^{-1}\right)^{T}$.
2. Which of these are subspaces of \mathbb{R}^{3} ? If the set is a subspace, prove it. If not, provide a counterexample.
(a) The set of all vectors (x, y, z) with $x+y+z=0$.
(b) The set of all vectors (x, y, z) with $x+y+z^{2}=0$.
(c) The set of all vectors (x, y, z) with $x y z=0$.
(d) The set of all vectors (x, y, z) with $y=z=0$.
3. Find a basis for the subspace of \mathbb{R}^{4} that consists of all vectors that satisfy

$$
5 x_{1}-2 x_{2}+x_{3}+x_{4}=0
$$

What is it's dimension? Prove it!
4. Let \mathbf{A} be the matrix defined by

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 4 & 5 \\
-1 & 0 & 3 \\
-1 & 4 & 11
\end{array}\right]
$$

and let $\mathbf{b}=<b_{1}, b_{2}, b_{3}>$. Perform Gaussian elimination (feel free to use Maple) to solve $\mathbf{A x}=\mathbf{b}$ and find conditions on b_{1}, b_{2}, b_{3} that guarantee
consistency of the system, and so find which \mathbf{b} are in the "range" of \mathbf{A}. Hint: this condition involves a linear combination of b_{1}, b_{2}, b_{3}. What does this subset of \mathbb{R}^{3} look like, geometrically?
5. (a) Suppose \mathbf{A} is a 3 by 7 matrix. Why must \mathbf{A} have a non-trivial nullspace?
(b) Suppose \mathbf{A} is a 3 by 7 matrix and $\mathbf{A x}=\mathbf{b}$ is not solvable for a certain vector \mathbf{b} in \mathbb{R}^{3}. What can you say about the nullity of \mathbf{A} ?
6. Find a basis for the column space, row space, and nullspace of the matrix defined by

$$
\mathbf{A}=\left[\begin{array}{ccccc}
1 & -2 & -1 & 3 & 0 \\
1 & 1 & 2 & 0 & 3 \\
3 & -1 & 2 & 4 & 5 \\
5 & 0 & 5 & 5 & 10 \\
4 & 2 & 6 & 2 & 10
\end{array}\right]
$$

by emulating the techniques in the text. Use Maple or Matlab for Gaussian elimination! Verify that the Rank-Nullity Theorem holds here.
7. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ are mutually orthogonal nonzero vectors in some vector space V (with an inner product, of course). Show that this set of vectors must be linearly independent. Hint: Start with

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{r} \mathbf{v}_{r}=0
$$

and then dot each side above with \mathbf{v}_{k} for each $k=1,2, \ldots, r$. What can you conclude about each c_{k} ?
8. Show that it is impossible to find a set of 100 mutually orthogonal (nonzero) vectors in \mathbb{R}^{99}. Hint: See last exercise.

