1 History and Background

2 Mathematical Model
 - Attenuation of x-rays
 - Geometry
 - The Radon Transform and Sinogram

3 Inverting the Radon Transform
 - Unfiltered Backprojection
 - Filtered Backprojection
 - An Easy Special Case
First CT Scanners

First practical scanners built in the late 1960’s.
First CT Scanners

Images took hours to process/render, and were crude:

![CT Scan Image](image-url)
Modern CT Scanners

Modern scanners are fast and high-resolution:
The mathematics underlying the model for a CT scanner is much older.

- Based on the Radon (and Fourier) transforms, dating back the early 20th century (and farther).
The mathematics underlying the model for a CT scanner is much older.

- Based on the Radon (and Fourier) transforms, dating back the early 20th century (and farther).
- Most of it is easy enough to do in a Calc 2 class!
Mathematical Model

We fire x-rays through a body at many angles and offsets, measure beam attenuation (output/input intensity):
Attenuation of x-rays

- Suppose $L(s)$, $a \leq s \leq b$ parameterizes a line with respect to arc length.
Attenuation of x-rays

- Suppose \(L(s), \ a \leq s \leq b \) parameterizes a line with respect to arc length.
- Let \(I(s) \) be the intensity of the x-ray along \(L \), with \(I(a) = I_a \) (known input intensity).
Suppose $L(s)$, $a \leq s \leq b$ parameterizes a line with respect to arc length.

Let $I(s)$ be the intensity of the x-ray along L, with $I(a) = I_a$ (known input intensity).

We suppose the x-ray beam is attenuated according to

$$I'(s) = -\lambda(L(s))I(s)$$

as it passes through the body. The function λ is called the attenuation coefficient. We want to find λ.
Attenuation of x-rays

\[I'(s) = -\lambda(L(s)) \cdot I(s) \text{ with } I(a) = I_a \text{ known.} \]

We measure the output \(I(b) \).
Solving the Attenuation DE

The DE \(l'(s) = -\lambda(L(s))l(s) \) with \(l(a) = l_a \) is easy to solve via separation of variables. We find

\[
l(s) = l_a \exp\left(-\int_a^s \lambda(L(t)) \, dt\right).
\]
The DE $I'(s) = -\lambda(L(s))I(s)$ with $I(a) = I_a$ is easy to solve via separation of variables. We find

$$I(s) = I_a \exp\left(-\int_a^s \lambda(L(t)) \, dt\right).$$

If we know (measure) $I(b)$ then we can compute

$$\int_a^b \lambda(L(t)) \, dt = -\ln(I(b)/I(a)).$$

We can find the integral on the left, for any line through the body.
Attenuation Example

Some line integrals:

![Diagram showing line integrals with values 0.23, 0.92, 0.71, and 2.92]
Geometry and Notation

Suppose $L(s) = p + sn^\perp$, where

- $n = \langle \cos(\theta), \sin(\theta) \rangle$ dictates line normal vector, $\theta \in [0, \pi)$.
- $p = rn$, $r \in (-1, 1)$ is “offset” from the origin.

Note $-\sqrt{1 - r^2} < s < \sqrt{1 - r^2}$.
The Radon Transform

In summary, by firing x-rays through the body, we can compute the integral

\[d(r, \theta) = \int_{-\sqrt{1-r^2}}^{\sqrt{1-r^2}} \lambda(L(s)) \, ds \]

for \(0 \leq \theta < \pi, -1 < r < 1 \).

The quantity \(d(r, \theta) \) is called the “Radon Transform” of \(\lambda \).
The Radon Transform

In summary, by firing x-rays through the body, we can compute the integral

\[d(r, \theta) = \int_{-\sqrt{1-r^2}}^{\sqrt{1-r^2}} \lambda(L(s)) \, ds \]

for \(0 \leq \theta < \pi, -1 < r < 1. \)

The quantity \(d(r, \theta) \) is called the “Radon Transform” of \(\lambda. \)

Is this enough to determine \(\lambda? \) How?
The Sinogram

CT target and its sinogram:
The Sinogram

CT target and its sinogram:
The Sinogram

CT target and its sinogram:
Observation: Every x-ray through a high attenuation region will yield a large line integral.
For any fixed point \((x_0, y_0)\) in the body, the line \(L(s)\) with normal at angle \(\theta\) is given non-parametrically by

\[x \cos(\theta) + y \sin(\theta) = r \]

with \(r = x_0 \cos(\theta) + y_0 \sin(\theta)\):
Each point on the curve \(r = x_0 \cos(\theta) + y_0 \sin(\theta) \) in the sinogram corresponds to a line through \((x_0, y_0)\) in the target.
The average value of the Radon transform $d(\theta, r)$ over all lines through (x_0, y_0) is then

$$\tilde{\lambda}(x_0, y_0) = \int_{0}^{\pi} d(\theta, x_0 \cos(\theta) + y_0 \sin(\theta)) \, d\theta.$$

This is called the backprojection of $d(\theta, r)$.

Maybe $\tilde{\lambda}$ will look like λ.

Kurt Bryan
Inverse Problems 4: The Mathematics of CT Scanners
The average value of the Radon transform $d(\theta, r)$ over all lines through (x_0, y_0) is then

$$\tilde{\lambda}(x_0, y_0) = \int_{0}^{\pi} d(\theta, x_0 \cos(\theta) + y_0 \sin(\theta)) \, d\theta.$$

This is called the backprojection of $d(\theta, r)$.

Maybe $\tilde{\lambda}$ will look like λ.
Unfiltered Backprojection Example 1
Unfiltered Backprojection Example 2

![Unfiltered Backprojection Example 2](image_url)
Unfiltered Backprojection Example 3
Unfiltered Backprojection is Blurry

- Straight backprojection ("unfiltered" backprojection) gives slightly blurry reconstructions.
Unfiltered Backprojection is Blurry

- Straight backprojection ("unfiltered" backprojection) gives slightly blurry reconstructions.
- Unfiltered backprojection is only an approximate inverse for the Radon transform.
Unfiltered Backprojection is Blurry

- Straight backprojection ("unfiltered" backprojection) gives slightly blurry reconstructions.
- Unfiltered backprojection is only an approximate inverse for the Radon transform.
- There’s another step needed to compute the true inverse (and get sharper images).
Filtered Backprojection

If $d(\theta, r)$ is the “raw” sinogram, first construct $\tilde{d}(\theta, r)$ by expanding into a Fourier series with respect to r:

$$d(\theta, r) = \sum_{k=-\infty}^{\infty} c_k e^{i\pi kr} \quad \text{with} \quad c_k = \int_{-1}^{1} d(\theta, r)e^{-i\pi kr} \, dr,$$

then

\[1\] in the continuous case, a Fourier integral transform
If $d(\theta, r)$ is the “raw” sinogram, first construct $\tilde{d}(\theta, r)$ by expanding into a Fourier series\(^1\) with respect to r:

$$d(\theta, r) = \sum_{k=-\infty}^{\infty} c_k e^{i\pi kr} \text{ with } c_k = \int_{-1}^{1} d(\theta, r)e^{-i\pi kr} \, dr,$$

then set

$$\tilde{d}(\theta, r) \sum_{k=-\infty}^{\infty} |k| c_k e^{i\pi kr}.$$

In signal processing terms, we apply a high-pass “ramp” filter to d, in the r variable. Finally, backproject.

\(^1\)in the continuous case, a Fourier integral transform
Filtered Backprojection Example 1
Filtered Backprojection Example 2
Filtered Backprojection Example 3
Suppose λ depends only distance from the origin, so $\lambda = \lambda(\sqrt{x^2 + y^2})$:
The Radial Case

In this case it’s easy to see that the Radon transform depends only on r, not θ. For a line at distance r from the origin

$$d(r) = \int_{-\sqrt{1-r^2}}^{\sqrt{1-r^2}} \lambda(\sqrt{r^2 + s^2}) ds = 2 \int_{0}^{\sqrt{1-r^2}} \lambda(\sqrt{r^2 + s^2}) ds.$$
In summary, if we are given the function $d(r)$ for $0 \leq r \leq 1$

$$d(r) = 2 \int_0^{\sqrt{1-r^2}} \lambda(\sqrt{r^2 + s^2}) \, ds$$

can we find the function λ?
In summary, if we are given the function $d(r)$ for $0 \leq r \leq 1$

$$d(r) = 2 \int_{0}^{\sqrt{1-r^2}} \lambda(\sqrt{r^2 + s^2}) \, ds$$

can we find the function λ?

With a couple change of variables, this integral equation can be massaged into a “well-known” integral equation.
The Radial Case

Start with

\[d(r) = 2 \int_{0}^{\sqrt{1-r^2}} \lambda(\sqrt{r^2 + s^2}) \, ds. \]
The Radial Case

Start with

\[d(r) = 2 \int_0^{\sqrt{1-r^2}} \lambda(\sqrt{r^2 + s^2}) \, ds. \]

Make \(u \)-substitution \(u = \sqrt{r^2 + s^2}, \) (so \(s = \sqrt{u^2 - r^2}, \) and \(ds = u \, du/\sqrt{u^2 - r^2} \)), obtain

\[d(r) = 2 \int_r^1 \frac{u \lambda(u)}{\sqrt{u^2 - r^2}} \, du. \]
The Radial Case

Rewrite as

\[d(r) = 2 \int_{r}^{1} \frac{u \lambda(u)}{\sqrt{u^2 - r^2}} \, du \]

\[= 2 \int_{r}^{1} \frac{u \lambda(u)}{\sqrt{(1 - r^2) - (1 - u^2)}} \, du. \]
The Radial Case

Rewrite as

\[d(r) = 2 \int_r^1 \frac{u \lambda(u)}{\sqrt{u^2 - r^2}} \, du \]

\[= 2 \int_r^1 \frac{u \lambda(u)}{\sqrt{(1 - r^2) - (1 - u^2)}} \, du. \]

Define \(z = 1 - r^2 \) (so \(r = \sqrt{1 - z} \)), substitute \(t = 1 - u^2 \) (so \(u = \sqrt{1 - t} \), \(du = -\frac{1}{2\sqrt{1-t}} \, dt \)) to find

\[d(\sqrt{1 - z}) = \int_0^z \frac{\lambda(\sqrt{1 - t})}{\sqrt{z - t}} \, dt. \]
Inverting the Radon Transform

Unfiltered Backprojection

Filtered Backprojection

An Easy Special Case

The Radial Case

\[d(\sqrt{1-z}) = \int_0^z \frac{\lambda(\sqrt{1-t})}{\sqrt{z-t}} \, dt \]

define \(g(z) = d(\sqrt{1-z}) \) and \(\phi(t) = \lambda(\sqrt{1-t}) \). We obtain

\[\int_0^z \frac{\phi(t)}{\sqrt{z-t}} \, dt = g(z) \]

known as Abel’s equation. It has a closed-form solution!
The solution to
\[\int_0^z \frac{\phi(t)}{\sqrt{z-t}} \, dt = g(z) \]
is
\[\phi(t) = \frac{1}{\pi} \frac{d}{dt} \left(\int_0^t \frac{g(w) \, dw}{\sqrt{t-w}} \right). \]
(Recall \(g(w) = d(\sqrt{1-w}) \)). We solve for \(\phi(t) \) and recover \(\lambda(r) = \phi(1-r^2) \).
Suppose $d(r) = \frac{\sqrt{1-r^2}}{3} (14 + 4r^2)$. Then

$$g(z) = d(\sqrt{1-z}) = \frac{\sqrt{z}}{3} (18 - 4z)$$

and

$$\phi(t) = \frac{1}{\pi} \frac{d}{dt} \left(\int_0^t \frac{g(w) \, dw}{\sqrt{t-w}} \right) = 3 - t.$$

Finally

$$\lambda(r) = \phi(1 - r^2) = 2 + r^2.$$
www.rose-hulman.edu/~bryan/invprobs.html