Wavelet Based Methods in Image Processing

Lecture 2 - Filtering and Convolution

Applied Mathematics Seminar

S. Allen Broughton
Lecture 2 & 2.a

- lecture 2
 - smoothing and differencing (filtering)
 - Maple and Matlab demos

- lecture 2.a
 - frequency domain
 - Fourier transform
 - convolution theorem
 - restoration
Smoothing and differencing

- smoothing
 - eliminate high frequency detail
 - let low frequency structure pass through
 - low pass filtering

- differencing
 - eliminate low frequency structure
 - let high frequency structure pass through
 - high pass filtering
Maple: filtering of signals

- graphs
- algebra
- low pass \(X \rightarrow H_l X = l * X \)
- high pass \(X \rightarrow H_h X = h * X \)
- filter1d.mws
Vector Convolution - 1D

- \(X = [X(0),...,X(N-1)] \) vector of length \(N \)
- \(g \), vector of possibly smaller length, zero pad out to size \(N \)

\[
g \ast X(r) = \sum_{s=0}^{N-1} g(r - s) X(s)
\]

- computation \(\text{mod} \ N \)
Matlab: filtering of images

- horizontal blur \[X \rightarrow H_lX = l^\ast X \]
- vertical blur \[X \rightarrow XH_l^t = X \ast l^t \]
- bi-directional blur \[X \rightarrow H_lXH_l^t = l^\ast X \ast l^t \]
- horizontal details \[X \rightarrow H_hX = h^\ast X \]
- vertical details \[X \rightarrow XH_h^t = X \ast h^t \]
- diagonal details \[X \rightarrow H_hXH_h^t = h^\ast X \ast h^t \]
- blur.m, edgedet.m, ansmid3.m
Matrix Convolution - 2D

- $X = [X(i,j)]$ $m \times n$ matrix
- M, convolution mask matrix of possibly smaller size, zero pad out to size $m \times n$

$$M \ast X(k,l) = \sum_{r=0}^{m-1} \sum_{s=0}^{n-1} M(k-r,l-s)X(r,s)$$

$$= \sum_{r=0}^{m-1} \sum_{s=0}^{n-1} X(k-r,l-s)M(r,s)$$

- computation $mod \ m$ in r,k, $mod \ m$ in s,l