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ABSTRACT 

This paper presents the challenges and successes of 

developing several control architectures on a custom 

designed quadcopter. In order to achieve this goal, it was 

necessary to use parameter identification to create a 

model of the kinematic equations, simulate the model 

with several control architectures in MATLAB/Simulink 

and finally test the algorithm on the actual hardware. The 

results of the simulation indicate that it is possible to 

design a controller to allow the quadcopter to hover 

stably. However, in order to implement this architecture 

on the hardware and control the attitude, it is necessary to 

have more information about the sensor data, more 

accurate parameter identification of the model and more 

robust control architecture to handle uncertainty in the 

plant. 
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1. Introduction 

Unmanned aerial vehicles (UAV) have garnered increased 

interest in the last decade due to their utility in military 

and commercial applications. These include surveillance, 

search and rescue, remote inspection or any application 

that would be dull, dirty or dangerous [1, 2]. 

 The UAV used in this study falls in the category of 

heavier than air motor vehicle with vertical takeoff and 

landing (VTOL) [1].  The advantage of this type of 

configuration is that it can function well in densely 

populated environments with close proximity to debris, 

humans or other robots [3]. The primary benefits to this 

type of VTOL UAV are the excellent payload to power 

ratio, vertical, stationary and low speed flight and the 

ability to maneuver in narrow spaces [3]. 

 Another name for a four rotor aerial vehicle is a 

quadcopter. The quadcopter provides an ideal option over 

other VTOL vehicles such as helicopters because of the 

increased thrust, maneuverability, safety, stability and low 

cost implementation [4, 5]. Unlike a helicopter, a 

quadcopter does not require a tail rotor to compensate for 

a yaw motion and thus all energy contributes to the 

upward thrust with reduced mechanical vibration. This 

design also makes quadcopters safer and they can be in 

closer proximity to humans. Lastly, the control of a 

quadcopter is more intuitive for a remote human operator 

[6]. 

 However, a quadcopter is still an under-actuated 

nonholonomic vehicle since there are only four parallel 

force inputs to control its six output coordinates (position 

and orientation in space) which requires complex control 

algorithms. 

 

2. Background 

Quadcopters themselves are not novel but techniques for 

controlling them are [1-6]. Typically, the position is 

controlled by a remote operator and the attitude is 

automatically stabilized by an onboard controller. Some 

of the control approaches presented in the literature 

include output tracking, state parameter, feedback 

linearization, neural networks, nonlinear as well as hybrid 

control schemes for attitude stabilization and torque 

compensation. In [6], they were able to prove that a PD 

controller can provide asymptotic stability which was 

examined in this work. This paper will provide a guide on 

how to use scientific methods such as parameter 

identification and kinematic modeling to design, develop, 

simulate and test control architectures on a quadcopter. 

2.1 Hardware Design 

The quadcopter used for this study was designed by a 

group of undergraduate students for their senior design 

project. Their ultimate goal was to create an autonomous 

flying robot to take samples and measure air quality at 

various altitudes in the atmosphere.  Although they were 

able to design and build the quadcopter, they were not 

able to create a controller in order for the robot to stably 

hover and eventually take flight. This is where this work 

begins. 

 The quadcopter frame was designed to minimize 

weight and maximize structural integrity and to support a 

desired payload. The dimensions of the quadcopter were 

less than 0.5m x 0.5m. It was made of lightweight 

aluminum with a central mounting board made of 



lightweight, nonconductive acrylonitrile butadiene styrene 

(ABS) to insure electrical isolation, account for noise and 

vibration, and allow for isolated mounting of essential 

flight sensors. Figure 1 provides a graphic of the 

quadcopter’s mechanical design.   

 

Figure 1. Quadcopter’s mechanical design 

 The quadcopter platform is equipped with four 

brushless DC motors, each of which required an 

electronic speed controller (ESC). They were chosen 

because of their high torque output to minimal power 

input ratio and light weight compared to other models. 

The propeller blade sizes were chosen to be 10 x 7 inch 

(254 x 152 mm) in order to meet the necessary thrust 

requirement. 

2.2 Electrical Design 

The quadcopter was required to hover and remain stable 

at various heights, it had to handle external disturbances 

such as wind gusts as well as being able to navigate to a 

predetermined target. Therefore, the electronics on board 

the quadcopter consisted of two major systems: inertial 

navigation and external sensors. The electronics board 

also had a wireless communication system for data 

transmission and to communicate with the robot from a 

ground station. 

 The inertial navigation system (INS) consists of 

accelerometers and gyroscopes to detect position, 

orientation, and velocity. Furthermore, the quadcopter 

also has an altimeter, compass and GPS to enable precise 

outdoor navigation. The primary components used for this 

study were the INS sensors. However, the accuracy of the 

INS is limited by the sampling frequency and suffers from 

external vibration. For gyroscopes, it is important to have 

sufficient sensing range with enough precision to avoid 

sensor clipping when performing quick maneuvers. 

 In order to interface with the quadcopter, a four layer 

control board was developed with a 1.8V power plane, a 

3.3V digital plane, a 3.3V analog plane, and a separate 

ground plane. This board could run embedded C code at 

150 MHZ and connect to a ground station via TCP/IP 

over a standard 802.11g network. The wireless link has an 

effective range of 75 meters. It outputs PWM signals on 

four channels 50 times a second and reads its six 12-bit 

analog bits with a 12.5 MHZ sampling rate. 

 A Texas Instruments “TMS320F28335 Delfino 

Floating-Point Digital Signal Controller” 32-bit 150 MHz 

processor was used. The 28335 is a C2000-class real-time 

digital signal controller that includes many hardware-

accelerated math functions, several internal timers and 

ADC and UARTS. The processor provided a 

MATLAB/Simulink interface to fully support the 

development of high level control architectures. 

Mathworks “Embedded Coder” toolbox and TI’s “Code 

Composer Studio v.4” were used to implement embedded 

C code for this work. 

 Ground bounce, voltage ripples, or operation under 

heavy load, could drop the primary flight battery below 

the required 3.3V supply voltage for the onboard 

regulator. To avoid a control board brown-out, a smaller 

secondary battery was attached to the robot to power the 

avionic, control, and communication circuits. 

3. Controller Design 

This section will detail the necessary steps to develop a 

controller for the quadcopter described in section 2. 

3.1 Dynamic Model and Parameter Identification 

Due to the complexity of the quadcopter and the fact that 

it is an under-actuated aircraft with fewer controllable 

degrees of freedom than possible degrees of freedom, it is 

necessary to make simplifications and abstractions to 

derive the kinematic model. The simplifications were that 

the aircraft was modeled as a symmetric, rigid cross frame 

structure equipped with four rotors in a common 

horizontal plane. Assume that the robot has a local 

reference frame,  , coincident with the center of mass of 

the aircraft and an inertial reference frame,  . The two 

reference frames are related to each other by a rotation 

matrix dependent on Euler angles,      , to express the 

robot’s orientation in space. 

 This work will use the direction cosine matrix 

(DCM) approach to represent the aircraft’s orientation 



with respect to the inertial reference frame [7]. The DCM 

fits more naturally than the quaternion approach for 

control and navigation purposes. It is more intuitive due 

to the mathematical familiarity of coordination 

transformation of a vector in one system to another. The 

following DCM transforms the quadcopter’s three axis 

vectors to be coincident with the inertial reference frame. 

Note that    denotes      and   denotes     , etc. 

[
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 The main effects modeled were the aerodynamics 

(propeller rotation), inertial counter torques (due to 

changes in propeller rotation speed), gravity effects (from 

the center of mass of the robot), and gyroscopic effects. 

 To understand the kinematics, note that      ̇  ̇  ̇   

stands for the aircrafts linear velocity and   

  ̇  ̇  ̇  for the angular velocity, both expressed in the 

local reference frame. Newton’s equations of motion yield 

the following equations of motion for the quadcopter: 
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Here S() denotes a skew symmetric matrix which helps 

calculating vector cross products. 
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and 

 ̇        . (3.6) 

   denotes the gyroscopic torques and    the external 

airframe torques. 

 Let    ∑ |  |
 
    be the total thrust with each 

propeller lift force,         
 . Thrust and drag of the 

propellers result in external airframe torques. 
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with l as the distance to the center of gravity, and   and b 

are two parameters mainly depending on the density of air 

as well as the size and shape of the propellers. 

 Gyroscopic torques account for the angular moments 

of spinning masses. The gyroscopic torque, 

    ∑          ⃗⃗  ⃗             
 
    (3.8) 

with    as the inertia for each rotor. 

 The above equations had to be simplified and 

consolidated to derive a system of differential equations 

that describe the motion of a quadcopter. Next, the DCM 

was used to simplify the equations. The derivative of 

equation (3.1) was given by 

 ̈     ̇   ̇       ̇                       (3.9) 

The substitution of equations (3.2) and (3.6) into equation 

(3.9) yields 

 ̈                     ⃗⃗  ⃗  
 

 
        ⃗⃗  ⃗        (3.10) 

which due to the nature of R and the skew-symmetric 

matrix simplifies to 

 ̈       ⃗⃗  ⃗  
 

 
        ⃗⃗  ⃗. (3.11) 

Finally, this derivation provides the 2nd order differential 

equations for the aircraft’s position and orientation in 

space. 
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 Before any adequate controller could be developed, 

the physical parameters of the quadcopter had to be 

measured or at least roughly estimated. It was divided into 

the following categories: mass and dimensions of the 

aircraft, dynamics of rotors, motors and airframe and 

aerodynamics of the propellers. 



 For a thorough analysis of motor dynamics on the 

quadcopter, it is necessary to derive a mathematical 

model based upon well-known equations of motion for 

DC motors. However, since there was no information 

available regarding the motor constants and it is rather 

complicated to model brushless DC motors, an alternate 

approach was used. This approach involved deriving the 

frequency-to-speed relationship for each motor. 

 The experimental setup included one motor equipped 

with a reflective piece of tape and affixed to the ground. 

Then a voltage generator using PWM input signals was 

attached to the motor. The input signal was then 

incrementally increased and the output speed (RPM) 

signal was measured using an infrared non-contact 

tachometer. 

 In theory, the frequency-to-speed relationships of 

BLDC motors is linear but speed controllers need a way 

to determine the rotor position to direct the rotation. This 

is done by measuring the back EMF in the undriven coils 

of the motor. If the difference in back EMF between two 

input values is not high enough the controller doesn’t 

change the RPM which results in a staircase function. 

Figure 2 illustrates this phenomenon. 

 

Figure 2. Frequency-to-speed relation of brushless motors 

 Since the dynamics of the quadcopter were highly 

dependent on its moment of inertia, a pendulum 

experiment was used to determine the moments of inertia 

for the entire robot. Since the center of mass and the 

principal axes (coordinate axes) of the aircraft are known, 

the moment of inertia about each principal axis was found 

directly by developing a torsional pendulum with the 

rotation of the pendulum passing through the center of 

mass aligned with the axis of rotation. Therefore the mass 

moment of inertia can be calculated using the equation of 

a simple harmonic oscillator (linearized around its 

equilibrium point     . 

  
            

      
            (3.14) 

where t is the period of oscillation in sec. The 

experimental setup is shown in figure 3. 

  
Figure 3. Experiment to measure moments of inertia 

 For the moment of inertia of each rotor, geometry 

and basic mechanical equations were used to calculate 

both values. It was composed of two parameters, the 

rotational moment of inertia around the propeller axis, 

           and the rotational moment of inertia around the 

motor axis,       . The motor was modeled as a solid 

cylinder. Since the gyroscopic torques only affect the 

dynamics around the aircraft’s z-axis, only    was 

required. To estimate the moment of inertia for a propeller 

blade, its mass and geometry were required. Because all 

propeller blades are symmetric, only one had to be 

measured. Again only    was required. Each propeller 

blade was modeled as a thin rectangular plate with equal 

mass distribution. 

 The two most important aerodynamic coefficients are 

drag factor, b and thrust factor,  . Pounds et al. [5] 

derived a relationship between thrust and induced velocity 

in a rotor (see equation (3.16)). They also derived a 

relationship between drag and induced velocity in a rotor 

(see equation (3.17)). In a stable hovering position, the 

aircraft’s total thrust T can be calculated with 

       ∑                 
  

     (3.15) 

where      denotes density of air, A is the disc area of a 

rotation propeller blade and   the induced linear velocity. 

The linear velocity at each point along the propeller blade 

is proportional to the radial distance from the rotor shaft. 

Thus, by integrating along the length of the blade, rules 

for the entire rotor using and the rotor’s angular velocity 



  can be produced which show a proportional 

relationship. 

                             
 (3.16) 

                              (3.17) 

Here r denotes the radius of each rotor. Experiments were 

designed to measure the relationship between thrust 

(respectively drag) and angular velocity,  . 

 One can see that thrust is proportional to the square 

of the angular velocity. The total thrust of the quadcopter 

in a stable hover flight has to equal the total mass, m of 

the robot times the acceleration of gravity, g. It was 

measured using an infrared non-contact tachometer and 

then the thrust coefficient was calculated. 

 To estimate the drag factor,  , it was necessary to 

describe the torque acting on the shaft of each motor in 

relation to the angular velocity,  . In an experimental 

setup, a single rotor was fixed on a plate and attached to 

the ground. It was supplied with an 11V battery voltage. 

To estimate the drag coefficient, the induced current at 

hover speed with and without a load (propeller blade) was 

measured. By measuring the overall power loss, the 

induced torque caused by the attached propeller blade can 

easily be calculated with 

      
     

      
 (3.18) 

 To get the total drag, all four rotors had to be 

considered. As for thrust, the drag is proportional to the 

square of the angular speed,  , of the rotors. This results 

in a proportional drag coefficient,   of 

  
       

      
  (3.19) 

 The control of an UAV system often contains two 

main control loops: an inner, faster, vehicle control loop, 

and an outer, slower, mission control loop. The mission 

control loop calculates the desired position and velocity 

for the vehicle, which is then stabilized by the vehicle 

control loop. As in most mobile robotics applications, 

direct position control is often not feasible due to position 

measurement (or estimation) not being accurate enough 

for a feedback controller [8]. 

 The focus of this research was on the attitude 

dynamics (the inner control loop) since it is necessary to 

stabilize the aircraft in flight and hover at a current 

position before any position control can be designed and 

tested. 

 To establish a vehicle controller, the derived state 

space model was decomposed into two subsets of 

differential equations to describe the dynamics of the 

attitude angles and the translation of the UAV. Examining 

equations (3.12 - 3.13) one can see that the dynamics of 

the system angles as well as their derivatives do not 

depend on translational components whereas the 

translational movement depends on the angles but not on 

the angular movements. Therefore the overall system can 

be broken into two subsystems: an angular rotation 

subsystem and a translational movement subsystem. 

 The angular rotations subsystem consists of the last 

six components (equation (3.13)); roll, pitch, and yaw 

angles and their derivatives. There are two common 

control approaches often used in current research on the 

control of quadcopters, PD and optimal or LQ control (or 

slight variations of these principles). Bouabdallah et al. 

used a Lyapunov equation to prove that a PD controller 

that could stably hover a quadcopter at any desired height 

       can be developed for an initial condition where 

                do not equal zero [1]. 

 Both control architectures presented here used a 

linearized state space model of the quadcopter. This 

method is sufficient most of the time since a quadcopter is 

primarily used in hover flight mode. However, strong 

winds or aggressive maneuvers could lead to a loss of 

control. 

3.2 State space PD feedback controller 

The first step in the state-space design method for a PD 

controller was to find the law as a feedback of a linear 

combination of the state variables 
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 Given the fact that both angles and angular rates for 

pitch, roll and yaw were measured by sensors, it was 

assumed that all elements of the state vector were 

available. Substituting (3.21) into a general state-space 

equation yielded an equation for the closed-loop system: 

 ̇            (3.21) 

Evaluating the characteristic equation 



                   (3.22) 

resulted in an 6th-order polynomial containing all the 

gains of K. The gains    were chosen in a way that the 

roots of the closed loop system (3.21) were located in the 

left half plane (stable system). The required elements of K 

were then obtained by matching desired poles to the 

coefficients of equation (3.22). 

3.3 Optimal control or LQR design 

Instead of picking root values for the closed loop system 

on a trial and error basis, designing a controller K and 

evaluating the results, it would be preferable to find the 

best possible solution for the gain values that produce a 

desired control effort and system response. A very 

effective and widely used technique in modern linear 

control systems to do this is the method of an optimal 

linear quadratic regulator or LQR. The basic idea is to 

minimize a performance index, 

        ∫                   
 

  
 (3.23) 

where matrix Q penalizes the state and matrix R penalizes 

the control effort. To get the optimal values for K which 

places the closed-loop poles at the stable roots of the 

symmetric root-locus equation the algebraic Riccati 

equation, 

                          (3.24) 

was solved to obtain matrix P. Knowing P, the gain 

matrix K could be calculated with 

                      . (3.25) 

 Optimal control design has the advantage of speeding 

up and simplifying the tuning process to find the desired 

gain values. It limits the parameters one can influence to 

the two matrices R and Q, and in theory and simulation 

results in the best solution for a control problem. 

4. Testing and Results 

This section will summarize the testing and results of the 

two designed controllers by using MATLAB/Simulink 

simulation, hardware implementation via 

MATLAB/Simulink and via embedded C code. 

4.1 MATLAB/Simulink Simulation 

The dynamical quadcopter model of the prior section and 

the derived control algorithms were implemented in 

MATLAB/Simulink to illustrate that it was possible to 

control the attitude of the quadcopter. The model was 

created with the identified aircraft parameters. The testing 

environment contained both the linearized model for 

validation purposes as well as the nonlinear dynamical 

model of the quadcopter to simulate real world conditions 

and behavior. 

 In a first simulation the linearized model was used for 

a simulation time of 5sec and an initial offset of pi/4 rad/s 

on pitch, roll and yaw angle. The initial velocities were all 

assumed to be 0 m/sec. The desired state for each angle as 

well as the angular rates was the quadcopter’s hovering 

condition where all angles and velocities are zero. The 

simulation results are shown in figure 4. 

 

Figure 3. Nonlinear model simulation results 

 Both controllers performed as expected on the 

linearized model and were able to compensate for the 

initial disturbances without any problems. When used 

with the nonlinear dynamical model the LQR control 

architecture clearly had a theoretical advantage over any 

state-feedback controller. It reduced the overshoot for the 

angular velocities and provided a very good settling time 

of less than 2s for minor disturbances. 

4.2 MATLAB/Simulink hardware implementation 

The first approach to implement the control architectures 

on the quadcopter hardware used various blocks from 

Mathworks MATLAB / Simulink Embedded Targets 

library which required an Embedded Coder™ license. It 

supported Texas Instruments “TMS320F28335” as well 
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as many other microcontroller models. Embedded 

Coder™ provides MATLAB / Simulink with the ability to 

generate readable, compact, and fast C and C++ code for 

use on embedded processors, on-target rapid prototyping 

boards, and microprocessors used in mass production. 

Embedded Coder™ can establish a direct connection 

between the MATLAB environment and the hardware for 

design and testing purposes. The entire quadcopter 

required at least four basic MATLAB / Simulink modules 

to be implemented, a wireless module to establish a 

communication between the aircraft and a ground control 

station, the ground control itself which in this case 

consisted of a joystick module, a ADC input module to 

read the required sensor signals for the controller and a 

PWM output module to connect the control board to the 

motors of the aircraft. 

 Unfortunately, Embedded Coder™ only worked with 

major restrictions and did not support Automation 

Interface and Processor-in-the-loop communications with 

CCSv4, which proved to cause many problems for a fully 

functional implementation. It is important to note that at 

the time of this work, Mathworks was planning to fully 

support the next generation of TI’s Code Composer 

Studio 5, including a hardware-in-the-loop design and 

testing environment. 

4.3 Embedded C code hardware implementation 

Texas Instruments Code Composer Studio 4 software was 

used to develop code, which was then downloaded to the 

board via a USB/JTAG XDS100v1 module. As of the 

time of writing, the CCSv4 license for the XDS100-series 

emulators was free, so it provided a cost effective 

alternative to the MATLAB / Simulink Embedded Coder 

toolbox. TI provides an extensive library for the 

TMS320F28335 processor including many important 

code snippets as well as some useful demo programs to 

experiment with. 

 The code contained two major components that were 

necessary to implement the afore mentioned control 

architecture: a signal processing component which 

calculated estimates for pitch, roll and yaw and their 

derivatives, and a controller that adjusted the actual motor 

output signal based on sensor values and calculated gains. 

 The sensor information from the accelerometer and 

gyroscopes was first cleared of any bias to introduce 

positive and negative values before it was multiplied by a 

scaling gain. Then the accelerometer values were low-

pass filtered while the gyroscopic values went through a 

high-pass filter. Finally, both were fused together to get 

an estimate for pitch, roll and yaw as well as their 

respective time derivatives. 

 The control part was a rather straight forward 

implementation of the gain matrices derived in the prior 

chapter. At first the error variables for pitch, roll and yaw 

as well as their discrete time derivatives were calculated. 

These, were then multiplied by the respective P and D 

gains for each motor and added to the throttle command 

signal. It was taken into account that a transformation of 

these gains from   to PWM was required. 

 The control architecture was implemented and 

running on the quadcopter but didn’t perform as well as in 

the simulation. The lack of any hardware-in-the-loop 

functionality to get an idea of the actual sensor signals 

made it impossible to narrow down the actual problem. 

Data acquisition for sensor signals and motor output 

signals of the quadcopter will be an issue for future work. 

It was predicted that there were several issues that caused 

the lack of acceptable performance when the control 

architectures were tested on the quadcopter, including: 

sensor noise, wrong gain values from RPM to PWM 

output signals, inaccurate parameters, lack of accounting 

for output signal delays (motor dynamics were not 

modeled) or uncertainties in the kinematic model. 

5. Conclusions and Future Work 

In conclusion, this work has presented the methodology to 

implement several control architectures on a quadcopter 

when there is limited information about the dynamic 

kinematic model. It has summarized a method to identify 

the parameters, derive the kinematic model, simulate the 

controllers and implement them on the hardware. The 

results indicate that although the simulations performed 

well, it is necessary to have a more accurate model, with 

better sensor data and a more robust controller in order to 

obtain stable flight on the actual hardware. Some of this 

could be achieved by analyzing sensor data, repeatable 

controller tuning and hardware-in-the-loop methods. 
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