
INVESTIGATIONS IN THE CONTROL OF A

FOUR-ROTOR AERIAL ROBOT

ABSTRACT

This paper presents the challenges and successes of

developing several control architectures on a custom

designed quadcopter. In order to achieve this goal, it was

necessary to use parameter identification to create a

model of the kinematic equations, simulate the model

with several control architectures in MATLAB/Simulink

and finally test the algorithm on the actual hardware. The

results of the simulation indicate that it is possible to

design a controller to allow the quadcopter to hover

stably. However, in order to implement this architecture

on the hardware and control the attitude, it is necessary to

have more information about the sensor data, more

accurate parameter identification of the model and more

robust control architecture to handle uncertainty in the

plant.

KEY WORDS

 robot, quadcopter, control architectures, LQR, PD control

quadrotor, parameter identification

1. Introduction

Unmanned aerial vehicles (UAV) have garnered increased

interest in the last decade due to their utility in military

and commercial applications. These include surveillance,

search and rescue, remote inspection or any application

that would be dull, dirty or dangerous [1, 2].

 The UAV used in this study falls in the category of

heavier than air motor vehicle with vertical takeoff and

landing (VTOL) [1]. The advantage of this type of

configuration is that it can function well in densely

populated environments with close proximity to debris,

humans or other robots [3]. The primary benefits to this

type of VTOL UAV are the excellent payload to power

ratio, vertical, stationary and low speed flight and the

ability to maneuver in narrow spaces [3].

 Another name for a four rotor aerial vehicle is a

quadcopter. The quadcopter provides an ideal option over

other VTOL vehicles such as helicopters because of the

increased thrust, maneuverability, safety, stability and low

cost implementation [4, 5]. Unlike a helicopter, a

quadcopter does not require a tail rotor to compensate for

a yaw motion and thus all energy contributes to the

upward thrust with reduced mechanical vibration. This

design also makes quadcopters safer and they can be in

closer proximity to humans. Lastly, the control of a

quadcopter is more intuitive for a remote human operator

[6].

 However, a quadcopter is still an under-actuated

nonholonomic vehicle since there are only four parallel

force inputs to control its six output coordinates (position

and orientation in space) which requires complex control

algorithms.

2. Background

Quadcopters themselves are not novel but techniques for

controlling them are [1-6]. Typically, the position is

controlled by a remote operator and the attitude is

automatically stabilized by an onboard controller. Some

of the control approaches presented in the literature

include output tracking, state parameter, feedback

linearization, neural networks, nonlinear as well as hybrid

control schemes for attitude stabilization and torque

compensation. In [6], they were able to prove that a PD

controller can provide asymptotic stability which was

examined in this work. This paper will provide a guide on

how to use scientific methods such as parameter

identification and kinematic modeling to design, develop,

simulate and test control architectures on a quadcopter.

2.1 Hardware Design

The quadcopter used for this study was designed by a

group of undergraduate students for their senior design

project. Their ultimate goal was to create an autonomous

flying robot to take samples and measure air quality at

various altitudes in the atmosphere. Although they were

able to design and build the quadcopter, they were not

able to create a controller in order for the robot to stably

hover and eventually take flight. This is where this work

begins.

 The quadcopter frame was designed to minimize

weight and maximize structural integrity and to support a

desired payload. The dimensions of the quadcopter were

less than 0.5m x 0.5m. It was made of lightweight

aluminum with a central mounting board made of

lightweight, nonconductive acrylonitrile butadiene styrene

(ABS) to insure electrical isolation, account for noise and

vibration, and allow for isolated mounting of essential

flight sensors. Figure 1 provides a graphic of the

quadcopter’s mechanical design.

Figure 1. Quadcopter’s mechanical design

 The quadcopter platform is equipped with four

brushless DC motors, each of which required an

electronic speed controller (ESC). They were chosen

because of their high torque output to minimal power

input ratio and light weight compared to other models.

The propeller blade sizes were chosen to be 10 x 7 inch

(254 x 152 mm) in order to meet the necessary thrust

requirement.

2.2 Electrical Design

The quadcopter was required to hover and remain stable

at various heights, it had to handle external disturbances

such as wind gusts as well as being able to navigate to a

predetermined target. Therefore, the electronics on board

the quadcopter consisted of two major systems: inertial

navigation and external sensors. The electronics board

also had a wireless communication system for data

transmission and to communicate with the robot from a

ground station.

 The inertial navigation system (INS) consists of

accelerometers and gyroscopes to detect position,

orientation, and velocity. Furthermore, the quadcopter

also has an altimeter, compass and GPS to enable precise

outdoor navigation. The primary components used for this

study were the INS sensors. However, the accuracy of the

INS is limited by the sampling frequency and suffers from

external vibration. For gyroscopes, it is important to have

sufficient sensing range with enough precision to avoid

sensor clipping when performing quick maneuvers.

 In order to interface with the quadcopter, a four layer

control board was developed with a 1.8V power plane, a

3.3V digital plane, a 3.3V analog plane, and a separate

ground plane. This board could run embedded C code at

150 MHZ and connect to a ground station via TCP/IP

over a standard 802.11g network. The wireless link has an

effective range of 75 meters. It outputs PWM signals on

four channels 50 times a second and reads its six 12-bit

analog bits with a 12.5 MHZ sampling rate.

 A Texas Instruments “TMS320F28335 Delfino

Floating-Point Digital Signal Controller” 32-bit 150 MHz

processor was used. The 28335 is a C2000-class real-time

digital signal controller that includes many hardware-

accelerated math functions, several internal timers and

ADC and UARTS. The processor provided a

MATLAB/Simulink interface to fully support the

development of high level control architectures.

Mathworks “Embedded Coder” toolbox and TI’s “Code

Composer Studio v.4” were used to implement embedded

C code for this work.

 Ground bounce, voltage ripples, or operation under

heavy load, could drop the primary flight battery below

the required 3.3V supply voltage for the onboard

regulator. To avoid a control board brown-out, a smaller

secondary battery was attached to the robot to power the

avionic, control, and communication circuits.

3. Controller Design

This section will detail the necessary steps to develop a

controller for the quadcopter described in section 2.

3.1 Dynamic Model and Parameter Identification

Due to the complexity of the quadcopter and the fact that

it is an under-actuated aircraft with fewer controllable

degrees of freedom than possible degrees of freedom, it is

necessary to make simplifications and abstractions to

derive the kinematic model. The simplifications were that

the aircraft was modeled as a symmetric, rigid cross frame

structure equipped with four rotors in a common

horizontal plane. Assume that the robot has a local

reference frame, , coincident with the center of mass of

the aircraft and an inertial reference frame, . The two

reference frames are related to each other by a rotation

matrix dependent on Euler angles, , to express the

robot’s orientation in space.

 This work will use the direction cosine matrix

(DCM) approach to represent the aircraft’s orientation

with respect to the inertial reference frame [7]. The DCM

fits more naturally than the quaternion approach for

control and navigation purposes. It is more intuitive due

to the mathematical familiarity of coordination

transformation of a vector in one system to another. The

following DCM transforms the quadcopter’s three axis

vectors to be coincident with the inertial reference frame.

Note that denotes and denotes , etc.

[

]

 The main effects modeled were the aerodynamics

(propeller rotation), inertial counter torques (due to

changes in propeller rotation speed), gravity effects (from

the center of mass of the robot), and gyroscopic effects.

 To understand the kinematics, note that ̇ ̇ ̇

stands for the aircrafts linear velocity and

 ̇ ̇ ̇ for the angular velocity, both expressed in the

local reference frame. Newton’s equations of motion yield

the following equations of motion for the quadcopter:

 ̇ [

 ̇
 ̇
]
̇

 (3.1)

 ̇ ̈ ⃗⃗ ⃗

 ⃗⃗ ⃗ (3.2)

 ̇ [

 ̇
 ̇

]

̇

 (3.3)

 ̇ (3.4)

Here S() denotes a skew symmetric matrix which helps

calculating vector cross products.

 [

] (3.5)

and

 ̇ . (3.6)

 denotes the gyroscopic torques and the external

airframe torques.

 Let ∑ | |

 be the total thrust with each

propeller lift force,
 . Thrust and drag of the

propellers result in external airframe torques.

 [

] (3.7)

with l as the distance to the center of gravity, and and b

are two parameters mainly depending on the density of air

as well as the size and shape of the propellers.

 Gyroscopic torques account for the angular moments

of spinning masses. The gyroscopic torque,

 ∑ ⃗⃗ ⃗

 (3.8)

with as the inertia for each rotor.

 The above equations had to be simplified and

consolidated to derive a system of differential equations

that describe the motion of a quadcopter. Next, the DCM

was used to simplify the equations. The derivative of

equation (3.1) was given by

 ̈ ̇ ̇ ̇ (3.9)

The substitution of equations (3.2) and (3.6) into equation

(3.9) yields

 ̈ ⃗⃗ ⃗

 ⃗⃗ ⃗ (3.10)

which due to the nature of R and the skew-symmetric

matrix simplifies to

 ̈ ⃗⃗ ⃗

 ⃗⃗ ⃗. (3.11)

Finally, this derivation provides the 2nd order differential

equations for the aircraft’s position and orientation in

space.

[

 ̈
 ̈
]
̈

[

]

.(3.12)

[

 ̈
 ̈

]

̈

[

 ̇ ̇ (

)

 ̇

 ̇ ̇ (

)

 ̇

 ̇ ̇ (

)

]

 (3.13)

 Before any adequate controller could be developed,

the physical parameters of the quadcopter had to be

measured or at least roughly estimated. It was divided into

the following categories: mass and dimensions of the

aircraft, dynamics of rotors, motors and airframe and

aerodynamics of the propellers.

 For a thorough analysis of motor dynamics on the

quadcopter, it is necessary to derive a mathematical

model based upon well-known equations of motion for

DC motors. However, since there was no information

available regarding the motor constants and it is rather

complicated to model brushless DC motors, an alternate

approach was used. This approach involved deriving the

frequency-to-speed relationship for each motor.

 The experimental setup included one motor equipped

with a reflective piece of tape and affixed to the ground.

Then a voltage generator using PWM input signals was

attached to the motor. The input signal was then

incrementally increased and the output speed (RPM)

signal was measured using an infrared non-contact

tachometer.

 In theory, the frequency-to-speed relationships of

BLDC motors is linear but speed controllers need a way

to determine the rotor position to direct the rotation. This

is done by measuring the back EMF in the undriven coils

of the motor. If the difference in back EMF between two

input values is not high enough the controller doesn’t

change the RPM which results in a staircase function.

Figure 2 illustrates this phenomenon.

Figure 2. Frequency-to-speed relation of brushless motors

 Since the dynamics of the quadcopter were highly

dependent on its moment of inertia, a pendulum

experiment was used to determine the moments of inertia

for the entire robot. Since the center of mass and the

principal axes (coordinate axes) of the aircraft are known,

the moment of inertia about each principal axis was found

directly by developing a torsional pendulum with the

rotation of the pendulum passing through the center of

mass aligned with the axis of rotation. Therefore the mass

moment of inertia can be calculated using the equation of

a simple harmonic oscillator (linearized around its

equilibrium point .

 (3.14)

where t is the period of oscillation in sec. The

experimental setup is shown in figure 3.

Figure 3. Experiment to measure moments of inertia

 For the moment of inertia of each rotor, geometry

and basic mechanical equations were used to calculate

both values. It was composed of two parameters, the

rotational moment of inertia around the propeller axis,

 and the rotational moment of inertia around the

motor axis, . The motor was modeled as a solid

cylinder. Since the gyroscopic torques only affect the

dynamics around the aircraft’s z-axis, only was

required. To estimate the moment of inertia for a propeller

blade, its mass and geometry were required. Because all

propeller blades are symmetric, only one had to be

measured. Again only was required. Each propeller

blade was modeled as a thin rectangular plate with equal

mass distribution.

 The two most important aerodynamic coefficients are

drag factor, b and thrust factor, . Pounds et al. [5]

derived a relationship between thrust and induced velocity

in a rotor (see equation (3.16)). They also derived a

relationship between drag and induced velocity in a rotor

(see equation (3.17)). In a stable hovering position, the

aircraft’s total thrust T can be calculated with

 ∑

 (3.15)

where denotes density of air, A is the disc area of a

rotation propeller blade and the induced linear velocity.

The linear velocity at each point along the propeller blade

is proportional to the radial distance from the rotor shaft.

Thus, by integrating along the length of the blade, rules

for the entire rotor using and the rotor’s angular velocity

 can be produced which show a proportional

relationship.

 (3.16)

 (3.17)

Here r denotes the radius of each rotor. Experiments were

designed to measure the relationship between thrust

(respectively drag) and angular velocity, .

 One can see that thrust is proportional to the square

of the angular velocity. The total thrust of the quadcopter

in a stable hover flight has to equal the total mass, m of

the robot times the acceleration of gravity, g. It was

measured using an infrared non-contact tachometer and

then the thrust coefficient was calculated.

 To estimate the drag factor, , it was necessary to

describe the torque acting on the shaft of each motor in

relation to the angular velocity, . In an experimental

setup, a single rotor was fixed on a plate and attached to

the ground. It was supplied with an 11V battery voltage.

To estimate the drag coefficient, the induced current at

hover speed with and without a load (propeller blade) was

measured. By measuring the overall power loss, the

induced torque caused by the attached propeller blade can

easily be calculated with

 (3.18)

 To get the total drag, all four rotors had to be

considered. As for thrust, the drag is proportional to the

square of the angular speed, , of the rotors. This results

in a proportional drag coefficient, of

 (3.19)

 The control of an UAV system often contains two

main control loops: an inner, faster, vehicle control loop,

and an outer, slower, mission control loop. The mission

control loop calculates the desired position and velocity

for the vehicle, which is then stabilized by the vehicle

control loop. As in most mobile robotics applications,

direct position control is often not feasible due to position

measurement (or estimation) not being accurate enough

for a feedback controller [8].

 The focus of this research was on the attitude

dynamics (the inner control loop) since it is necessary to

stabilize the aircraft in flight and hover at a current

position before any position control can be designed and

tested.

 To establish a vehicle controller, the derived state

space model was decomposed into two subsets of

differential equations to describe the dynamics of the

attitude angles and the translation of the UAV. Examining

equations (3.12 - 3.13) one can see that the dynamics of

the system angles as well as their derivatives do not

depend on translational components whereas the

translational movement depends on the angles but not on

the angular movements. Therefore the overall system can

be broken into two subsystems: an angular rotation

subsystem and a translational movement subsystem.

 The angular rotations subsystem consists of the last

six components (equation (3.13)); roll, pitch, and yaw

angles and their derivatives. There are two common

control approaches often used in current research on the

control of quadcopters, PD and optimal or LQ control (or

slight variations of these principles). Bouabdallah et al.

used a Lyapunov equation to prove that a PD controller

that could stably hover a quadcopter at any desired height

 can be developed for an initial condition where

 do not equal zero [1].

 Both control architectures presented here used a

linearized state space model of the quadcopter. This

method is sufficient most of the time since a quadcopter is

primarily used in hover flight mode. However, strong

winds or aggressive maneuvers could lead to a loss of

control.

3.2 State space PD feedback controller

The first step in the state-space design method for a PD

controller was to find the law as a feedback of a linear

combination of the state variables

 [

] [

]. (3.20)

 Given the fact that both angles and angular rates for

pitch, roll and yaw were measured by sensors, it was

assumed that all elements of the state vector were

available. Substituting (3.21) into a general state-space

equation yielded an equation for the closed-loop system:

 ̇ (3.21)

Evaluating the characteristic equation

 (3.22)

resulted in an 6th-order polynomial containing all the

gains of K. The gains were chosen in a way that the

roots of the closed loop system (3.21) were located in the

left half plane (stable system). The required elements of K

were then obtained by matching desired poles to the

coefficients of equation (3.22).

3.3 Optimal control or LQR design

Instead of picking root values for the closed loop system

on a trial and error basis, designing a controller K and

evaluating the results, it would be preferable to find the

best possible solution for the gain values that produce a

desired control effort and system response. A very

effective and widely used technique in modern linear

control systems to do this is the method of an optimal

linear quadratic regulator or LQR. The basic idea is to

minimize a performance index,

 ∫

 (3.23)

where matrix Q penalizes the state and matrix R penalizes

the control effort. To get the optimal values for K which

places the closed-loop poles at the stable roots of the

symmetric root-locus equation the algebraic Riccati

equation,

 (3.24)

was solved to obtain matrix P. Knowing P, the gain

matrix K could be calculated with

 . (3.25)

 Optimal control design has the advantage of speeding

up and simplifying the tuning process to find the desired

gain values. It limits the parameters one can influence to

the two matrices R and Q, and in theory and simulation

results in the best solution for a control problem.

4. Testing and Results

This section will summarize the testing and results of the

two designed controllers by using MATLAB/Simulink

simulation, hardware implementation via

MATLAB/Simulink and via embedded C code.

4.1 MATLAB/Simulink Simulation

The dynamical quadcopter model of the prior section and

the derived control algorithms were implemented in

MATLAB/Simulink to illustrate that it was possible to

control the attitude of the quadcopter. The model was

created with the identified aircraft parameters. The testing

environment contained both the linearized model for

validation purposes as well as the nonlinear dynamical

model of the quadcopter to simulate real world conditions

and behavior.

 In a first simulation the linearized model was used for

a simulation time of 5sec and an initial offset of pi/4 rad/s

on pitch, roll and yaw angle. The initial velocities were all

assumed to be 0 m/sec. The desired state for each angle as

well as the angular rates was the quadcopter’s hovering

condition where all angles and velocities are zero. The

simulation results are shown in figure 4.

Figure 3. Nonlinear model simulation results

 Both controllers performed as expected on the

linearized model and were able to compensate for the

initial disturbances without any problems. When used

with the nonlinear dynamical model the LQR control

architecture clearly had a theoretical advantage over any

state-feedback controller. It reduced the overshoot for the

angular velocities and provided a very good settling time

of less than 2s for minor disturbances.

4.2 MATLAB/Simulink hardware implementation

The first approach to implement the control architectures

on the quadcopter hardware used various blocks from

Mathworks MATLAB / Simulink Embedded Targets

library which required an Embedded Coder™ license. It

supported Texas Instruments “TMS320F28335” as well

0 2 4 6
0

0.5

1

time in sec

p
h
i
in

 r
a
d

phi

0 2 4 6
-2

-1

0

time in sec

p
h
i d

o
t

in
 r

a
d

phi dot

0 2 4 6
0

0.5

1

time in sec

ro
ll

in
 r

a
d

theta

0 2 4 6
-1

-0.5

0

time in sec

ro
ll d

o
t

in
 r

a
d

theta dot

0 2 4 6
0

0.5

1

time in sec

y
a
w

 i
n
 r

a
d

psi

0 2 4 6
-1

-0.5

0

time in sec

y
a
w

d
o
t

in
 r

a
d

psi dot

SS Feedback

LQR SS Feedback

LQR

SS Feedback

LQR SS Feedback

LQR

SS Feedback

LQR SS Feedback

LQR

as many other microcontroller models. Embedded

Coder™ provides MATLAB / Simulink with the ability to

generate readable, compact, and fast C and C++ code for

use on embedded processors, on-target rapid prototyping

boards, and microprocessors used in mass production.

Embedded Coder™ can establish a direct connection

between the MATLAB environment and the hardware for

design and testing purposes. The entire quadcopter

required at least four basic MATLAB / Simulink modules

to be implemented, a wireless module to establish a

communication between the aircraft and a ground control

station, the ground control itself which in this case

consisted of a joystick module, a ADC input module to

read the required sensor signals for the controller and a

PWM output module to connect the control board to the

motors of the aircraft.

 Unfortunately, Embedded Coder™ only worked with

major restrictions and did not support Automation

Interface and Processor-in-the-loop communications with

CCSv4, which proved to cause many problems for a fully

functional implementation. It is important to note that at

the time of this work, Mathworks was planning to fully

support the next generation of TI’s Code Composer

Studio 5, including a hardware-in-the-loop design and

testing environment.

4.3 Embedded C code hardware implementation

Texas Instruments Code Composer Studio 4 software was

used to develop code, which was then downloaded to the

board via a USB/JTAG XDS100v1 module. As of the

time of writing, the CCSv4 license for the XDS100-series

emulators was free, so it provided a cost effective

alternative to the MATLAB / Simulink Embedded Coder

toolbox. TI provides an extensive library for the

TMS320F28335 processor including many important

code snippets as well as some useful demo programs to

experiment with.

 The code contained two major components that were

necessary to implement the afore mentioned control

architecture: a signal processing component which

calculated estimates for pitch, roll and yaw and their

derivatives, and a controller that adjusted the actual motor

output signal based on sensor values and calculated gains.

 The sensor information from the accelerometer and

gyroscopes was first cleared of any bias to introduce

positive and negative values before it was multiplied by a

scaling gain. Then the accelerometer values were low-

pass filtered while the gyroscopic values went through a

high-pass filter. Finally, both were fused together to get

an estimate for pitch, roll and yaw as well as their

respective time derivatives.

 The control part was a rather straight forward

implementation of the gain matrices derived in the prior

chapter. At first the error variables for pitch, roll and yaw

as well as their discrete time derivatives were calculated.

These, were then multiplied by the respective P and D

gains for each motor and added to the throttle command

signal. It was taken into account that a transformation of

these gains from to PWM was required.

 The control architecture was implemented and

running on the quadcopter but didn’t perform as well as in

the simulation. The lack of any hardware-in-the-loop

functionality to get an idea of the actual sensor signals

made it impossible to narrow down the actual problem.

Data acquisition for sensor signals and motor output

signals of the quadcopter will be an issue for future work.

It was predicted that there were several issues that caused

the lack of acceptable performance when the control

architectures were tested on the quadcopter, including:

sensor noise, wrong gain values from RPM to PWM

output signals, inaccurate parameters, lack of accounting

for output signal delays (motor dynamics were not

modeled) or uncertainties in the kinematic model.

5. Conclusions and Future Work

In conclusion, this work has presented the methodology to

implement several control architectures on a quadcopter

when there is limited information about the dynamic

kinematic model. It has summarized a method to identify

the parameters, derive the kinematic model, simulate the

controllers and implement them on the hardware. The

results indicate that although the simulations performed

well, it is necessary to have a more accurate model, with

better sensor data and a more robust controller in order to

obtain stable flight on the actual hardware. Some of this

could be achieved by analyzing sensor data, repeatable

controller tuning and hardware-in-the-loop methods.

References

[1] S. Bouabdallah, P. Murrieri, and R. Siegwart, Design

and Control of an Indoor Micro Quadrotor, Proceedings

of the 2004 IEEE International Conference on Robotics

and Automation (ICRA), 5(26), New Orleans, LA, April

26 - May 1, 2004, 4393-4398.

[2] B. Erginer and E. Altug, Modeling and PD Control of

a Quadrotor VTOL Vehicle", Proceedings of the 2007

IEEE Intelligent Vehicles Symposium (IV’07), Istanbul,

Turkey, June 13-15, 2007, 894-899.

[3] S. Bouabdallah and R. Siegwart, Towards Intelligent

Miniature Flying Robots, (Berlin, GE: Springer, 2006).

[4] P. Pounds, R. Mahony, P. Hynes, and J. Roberts,

Design of a Four-Rotor Aerial Robot, Proceedings of the

2002 Australasian Conference on Robotics and

Automation, Auckland, Australia, November 2 - 29, 2002.

[5] P. Pounds, R. Mahony, Corke, P. Corke, and J.

Roberts, Towards Dynamically-Favourable Quad-Rotor

Aerial Robots, Proceedings of the 2004 Australasian

Conference on Robotics & Automation (ARAA), Canberra

Australia, December 6 - 8, 2004.

[6] A. Tayebi and S. McGilvray, Attitude Stabilization of

a VTOL Quadrotor Aircraft, IEEE Transactions on

Control Systems Technology, 14, May 2006, 562-571.

[7] T. B. Burchett, "Alternative Derivation of the Euler

Axis Kinematic Differential Equation Using Eigensystem

Derivatives," Proceedings of the 2006 AIAA Atmospheric

Flight Mechanics Conference, 2006.

[8] H. Voos, "Nonlinear and Neural Network-based

Control of a Small Four-Rotor Aerial Robot,"

IEEE/ASME international conference on advanced

intelligent mechatronics, September 4 - 7, 2007, 1-6.

