Mobile Robotics: A tool for application-based integration of multidisciplinary undergraduate concepts

Carlotta A. Berry, Ph.D.

Electrical and Computer Engineering

Presentation Outline

- Introduction
- Course Format
- Course Content
- Hardware
- Software
- Labs
- Final Project
- Course Demographics
- Conclusions and Future Work

Robotics Certificate Program

- Multidisciplinary Educational Robotics Program
- A certificate is a minor across multiple disciplines
- Collaborative effort between faculty in
 - Computer Science and Software Engineering (CSSE),
 - Electrical and Computer Engineering (ECE),
 - Mechanical Engineering (ME)
- The certificate curriculum was approved in Fall 2008

Mobile Robotics

- Robots are mechanical systems with electrical controls and sensors, given intelligence through software
- Ideal for collaborative multidisciplinary teamwork and the integration of multiple disciplines

- Certificate students will have a deeper and broader exposure to their respective majors
- More realistic team demographic for the workforce
- Real world application of classroom theory

Course Format

- 3 days per week
- 3 hours of lecture
- 3 hours of lab
- Daily quizzes
- Laboratory assignments
- Final Project

Course Content

- Pre-requisites
 - Programming proficiency
 - Controls
- Topics
 - Locomotion
 - Kinematics
 - Feedback Control
 - Artificial Intelligence
 - Control Architectures
 - Navigation
 - Localization and Map Making

Hardware

- Traxster I w/ PIC18F
 Microcontroller
- Traxster II w/ Serializer
- IR, sonar, thermopile array, line sensors, I/O board, keypad, LCD, speech synthesizer

Software

- PIC18FMicrocontroller
 - MPLAB IDE
 - PICCLITE
- Serializer
 - Microsoft Visual C#
 - Microsoft Robotics
 Studio Libraries
 - Bluetooth

Obstacle Avoidance

- Subsumption Architecture
 - Random Wander
 - Collide (stop)
 - Runaway use a force vector to move away

heading

Wall Following

- PD feedback control
- IR & Sonar Sensors
- Start 10" from the wall and follow between 4 - 6" for at least 4 feet when the wall is found

Line Following

- PI feedback control
- Line following sensor
- Random wander until the line is found and then follow for at least one lap

Homing and Heat Seeking

- Hybrid Control
- Partial World Map
- Compass
- Temperature Array
- IR sensors
- Move toward a heat beacon using the map and switch to behaviors to dock
- Use representation to return to a wall where you left off

Topological Navigation

- Use behaviors and perceptual schema to identify gateways and move the robot to a goal
 - Go straight
 - Turn left
 - Turn left
 - Turn right
 - Stop

Final Project '07: Behavior-based relay

- Behavior-based control
 - Follow wall
 - Obstacle avoidance
 - Follow center
 - Follow object (robot)
 - Go to goal

Final Project '09: Path Planning (metric)

Wavefront propagation (grassfire)

11	10	9	8	7	6	5	4	3	3	3	4
11	10	9	8	7	6	5	4	3	2	3	4
11	10	9	8	7	6	5	4	3	3	3	4
11	10	9	1	1	1	1	4	4	4	4	4
11	10	10	1	1	1	1	5	5	5	5	5
11	11	11	1	1	1	1	6	6	6	6	6
12	12	12	1	1	1	1	7	7	7	7	7
13	13	13	1	1	1	1	8	8	8	8	8
14	14	14	1	1	1	1	9	9	9	9	9
15	15	14	13	12	11	10	10	10	10	10	10
16	15	14	13	12	11	11	11	11	11	11	11
16	15	14	13	12	12	12	12	12	12	12	12
\leftarrow			$\overline{}$				⊢—			$\overline{}$	-

Final Project '10: Localization and Path Planning

- Observable Markov
 Decision Process
- Distinctive Places
- Wavefront propagation

Course Demographics

- 46 student in 3 years
- Mostly EE and CPE seniors
- 8 graduate students
- 2 juniors
- 5 females

Conclusions and Future Work

- Explore hardware improvements including a different controller, robot, communication protocol or software
- Integrate the CMUCAM2+ and vision sensing labs

- Expand the final project to include simultaneous localization and mapping
- Create an Advanced Robotics course (i.e. human-robot interaction)

Questions

2007 CLASS

2010 CLASS

Carlotta A. Berry, Ph.D.

berry123@rose-hulman.edu

http://www.rose-hulman.edu/~berry123

http://robotics.rose-hulman.edu