

ECE 425 – Introduction to Mobile Robotics Winter 11-12

Lab1.docx C.A. Berry Page 1 of 8

Lab 2

Random Wander, Obstacle Avoidance

Reading: Introduction to AI Robotics (Sec. 4.3)

(Demonstration due in class on Thursday)

(Code and Memo due in Angel drop box by midnight on Sunday at midnight)

Read this entire lab procedure before coming to lab.

**

Purpose: An essential characteristic of an autonomous robot is the ability to navigate in an environment

safely. The purpose of this lab is to develop random wander and obstacle avoidance behaviors

for the CEENBoT. The design of your program should use subsumption architecture. Layer 0 of

your control architecture will be the collide and run away behaviors to keep the robot from

hitting obstacles. Layer 1 will be the random wander behavior which moves the robot a random

distance and/or heading every n seconds.

Objectives: At the conclusion of this lab, the student should be able to:

 Acquire and use data from all of the robot’s range sensors

 Write random wander and obstacle avoidance behaviors on the CEENBoT

 Use modular programming to implement subsumption architecture on the CEENBoT

 Move the servo to pan the environment with the sonar sensor

 Move the robot safely in an environment with obstacles

Equipment: CEENBoT platform, ‘324 v2.21.

AVR In-System Programmer (ISP)

Ruler

Software: AVR Studio 4 (32-bit) available at

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725

 WinAVR GCC toolchain (http://winavr.sourceforge.net/)

 CEENBoT API static library available at

http://www.digital-brain.info/downloads/capi324v221-v1.09.002R.zip

Theory:

The CEENBoT is equipped with left and right non-contact bump sensors in the front wired to the TINY

microprocessor. The robot also has 3 IR sensors wired directly into the ATMega 324 processor on analog inputs:

PA3 (left), PA4 (right) and PA5 (back). Finally, there is one sonar sensor on a servo turret connected to an analog

input (PA7). The sonar servo turret is connected to servo0. These connections are shown on Figure 1.

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725
http://winavr.sourceforge.net/
http://www.digital-brain.info/downloads/capi324v221-v1.09.002R.zip

ECE 425 – Introduction to Mobile Robotics Winter 11-12

Lab1.docx C.A. Berry Page 2 of 8

Figure 1: Range Sensors

The left and right contact switches are digital inputs and the state is transferred to the master MCU (ATMega 324)

via the SPI serial interface. SPI is synchronous peripheral interface that requires four lines of communication. The

master MCU requests the state of these sensors from the Tiny MCU and the Tiny sends the data back as a byte of

data (8-bits). The function to get the data from the contact switch is ATTINY_get_IR_state(). The function to set

the servo is ATTINY_set_RC_servos(). To read the sonar and IR data use the following functions: ADC_set_VREF(),

ADC_set_channel(),ADC_sample(). You will also need to use equation (1) to convert the byte sample to a voltage.

Refer to the CEENBoT-API Programmer's Reference Guide for detailed information regarding these functions.

 (1)

**

LAB PROCEDURE

**

Part 1 –Range Sensors

Download the RangeSensors project from the Angel course folder and use it to test the sensors. You may need to

modify the code to suit your purposes such as changing the library directories or printing different values to the

LCD.

The Sharp GP2Y0D810Z0F contact sensor is a reflectance sensor that emits and detects infrared light.

When an object is detected, the corresponding bit will be high or return a one. When an object is not detected,

the bit will be low or zero. The contact sensor detects an object within 4 inches. The specifications state that the

Sharp GPD120 sensors measure between 1.5” and 12” and the Maxbotix MaxSonar –EZ1 Sonar has a reliable range

of 6” to 20”. The sonar and IR will actually return an analog value that is proportional to the distance to an object.

As with all IR and sonar sensors; the ambient light, color, texture, material, and angle of incidence determine how

much energy is returned and this as well as specular reflection may affect accurate measurements.

In order to determine the specific characteristics of the range sensors on your particular robot, you should

take several measurements on each sensor to correlate the measured distance with the actual distance to an

ECE 425 – Introduction to Mobile Robotics Winter 11-12

Lab1.docx C.A. Berry Page 3 of 8

object. You will need to use this information in order to have consistency and reliability between the different

measurement devices and acceptable robot performance. You should write your code to account for any

discrepancies. The best way to display this information would be to use a data table and perform an error analysis

(see Table 1). You should include this data table in the appendix of your lab submission and provide a summary of

the results in the text of the memo.

Table 1: IR and Sonar Calibration Data

Distance
(“)

IR
(front)

IR
(left)

IR
(right)

IR
(back)

Sonar Contact
(left)

Contact
(right)

1

…

20

Part 2 – Layer 0 (Obstacle Avoidance)

This is the first time you will begin to add modularity in your programs by incorporating behavior-based

techniques. Behavior-based programming uses primitive behaviors as modules for control. Primitive behaviors are

concerned with achieving or maintaining a single, time-extended goal. They take inputs from sensors (or other

behaviors) and send outputs to actuators (or other behaviors). You will create your first two primitive behaviors:

obstacle avoidance, and random wander. The obstacle avoidance behavior will use either collide or run away

behavior. In the collide behavior, the robot will drive forward and stop when an obstacle is detected and continue

moving forward when the object is removed. In the run away behavior, the robot will move forward and when an

obstacle is detected, move away proportional to where the obstacle is felt (feel force). Your program should be

modular and make it clear which behavior is active (collide, run away).

Now that you are familiar with the range sensors and how to move the robot, create an obstacle

avoidance behavior. The obstacle avoidance abstract behavior includes a collide and run away primitive behaviors.

For the collide behavior, robot would drive forward and if an object is detected within 3 - 6 inches of the range

sensors, the robot should halt the forward drive motor. If the object is removed, the robot should continue to

move forward. You can use the free running ability of the stepper motor to do this. Refer to the CEENBoT-API

Programmer's Reference Guide for detailed information regarding the stepper motoer.

For the run away behavior, create a plot of the sensor readings and use the sum to create a repulsive

vector to turn the robot away (i.e. feel force). Finally, the robot should turn by some angle proportional to the

repulsive vector and continue moving (see Figure 2). There are two ways to illustrate the run away behavior, one

is to have the robot sit in the middle of the floor and move away when an object gets within 3 to 6 inches and then

ECE 425 – Introduction to Mobile Robotics Winter 11-12

Lab1.docx C.A. Berry Page 4 of 8

stop. Alternately, the robot can move forward and move when an object gets within 3 to 6 inches and then

continue moving forward.

Figure 2: Level 0 – Obstacle Avoidance

To demonstrate the collide behavior, the robot should drive forward until it encounters an obstacle and stop

without hitting it. Think of the collide behavior as the aggressive kid who comes close but then stops short from

touching the object. To demonstrate the run away behavior, the robot should sit in the middle of the floor until an

object gets close and then move the opposite direction to get away. Think of this behavior as the shy kid who does

not want any object to get too close to him. It is possible to also show run away for an aggressive kid who moves

forward and then moves away when an object gets close. It should be clear during the demonstration what type

of behavior the robot is executing.

Part 3 – Layer 1 (Random Wander)

In random wander, the robot will move in a random pattern when no obstacles are present.

Create a random wander routine that the robot uses to explore the room. This can be done by generating a

random number that represents the robot’s heading, steps, distance, or motor speed every n seconds. You have

the flexibility of using any combination of these values to make the robot explore the environment. You may also

need to include <stdio.h> and <stdlib.h> libraries and use the rand()%n command to generate a random number

between 0 and n.

Part 4 – Subsumption Architecture – Avoid Behavior

In this section the overall the subsumption architecture to create smart wander will be implemented. This

architecture is shown in Figure 3. The perceptual schemas are feel force and collide. The motor schemas are run

away and collide. The primitive behaviors are run away and collide and the two together make the abstract

behavior, obstacle avoidance. The second layer of the architecture is the wander module created in part 3. The

ECE 425 – Introduction to Mobile Robotics Winter 11-12

Lab1.docx C.A. Berry Page 5 of 8

wander module passes the heading the avoid module which combines the feel force and wander heading to

determine the direction the robot should turn to move away from obstacle. Note that the power of subsumption

architecture is that output of the higher level subsumes the output from the lower level. The avoid module

suppresses the output from runaway and replaces it to make the robot turn.

Now improve the random wander routine by integrating obstacle avoidance (collide and run away). The robot

should wander randomly until an obstacle is encountered. The robot should RunAway from the obstacle and

continue to wander. The robot’s heading from the Wander behavior should be modified based upon the force

from the range sensors and then turn and move from the obstacle. The Avoid module in Layer 1 combines the

FeelForce vector with the Wander vector. The Avoid module then subsumes the heading from the Run Away

module and replaces it with the modified heading as input to the Turn module.

s

Figure 3: Avoid Behavior

Your program should provide a method to get the robot ‘unstuck’ if it approaches any local minima points (i.e.

oscillates between two obstacles). Your program should be as modular as possible with multiple subroutines and

behaviors that will be integrated in subsequent programs. Devise a method to test and confirm that your program

works correctly and present the results in the laboratory memo. Figure 4 provides sample motion for the fully

integrated robot behaviors.

ECE 425 – Introduction to Mobile Robotics Winter 11-12

Lab1.docx C.A. Berry Page 6 of 8

Figure 4: Subsumption Architecture – Sample Robot Motion

Demonstration:

During the demonstration, you will show each layer of the architecture separately. For layer 0, the robot should

demonstrate shy kid and aggressive kid. Please review the lab procedure if you don’t recall what this means. For

layer 1, the robot should turn at a random heading and move forward periodically. Finally, to demonstrate the

complete architecture, the robot should wander and halt when it “collides” with an obstacle, or modify the

heading when it encounters and obstacle and then run away. The robot should give some type of audible and/or

visual signal when an obstacle is encountered. The buzzer, LCD and LEDs can be used to provide feedback on the

robot’s state. You may use the three pushbuttons to start or stop the different layers on the robot to speed up the

demonstration.

Bring your robot fully charged to class on Thursday for the demonstration. Note that you always must re-flash

the factory firmware and plug in the AC adapter in order for the robot to charge. Alternately, you can put the

robot battery in the RC car battery charger. Note that this is a fast charger and will not last as long as the outlet

charge.

Program:

In subsequent weeks you will reuse this code thus your code should follow proper programming techniques such

as detailed commenting and be as modular as possible where behaviors and reactive rules are separate functions.

Memo Guidelines:

Please use the following checklist to insure that your memo meets the basic guidelines.

 Format

o Begins with Date, To , From, Subject

o Font no larger than 12 point font

ECE 425 – Introduction to Mobile Robotics Winter 11-12

Lab1.docx C.A. Berry Page 7 of 8

o Spacing no larger than double space

o Includes handwritten initials of both partners at the top of the memo next to the names

o Written as a paragraph not bulleted list

o No longer than three pages of text

 Writing

o Memo is organized in a logical order

o Writing is direct, concise and to the point

o Written in first person from lab partners

o Correct grammar, no spelling errors

 Content

o Starts with a statement of purpose

o Discusses the strategy or pseudocode for implementing the robot paths (may include a flow chart)

o Discusses the tests and methods performed

o States the results including error analysis

o Shows data tables with error analysis and required plots or graphs

o Answers all questions posed in the lab procedure

o Clear statement of conclusions

Questions to Answer in the Memo:

1. What was the general plan you used to implement the random wander and obstacle avoidance

behaviors?

2. How did you create a modular program and integrate the two layers into the overall program?

3. Did you use the servo turret to create redundant sensing on the robot’s front half.

4. How could you create a smart wander routine to entirely cover a room?

5. What kind of errors did you encounter with the obstacle avoidance behavior?

6. How could you improve the obstacle avoidance behavior?

ECE 425 – Introduction to Mobile Robotics Winter 11-12

Lab1.docx C.A. Berry Page 8 of 8

7. Were there any obstacles that the robot could not detect?

8. Were there any situations when the range sensors did not give you reliable data?

9. How did you keep track of the robot’s states in the program?

10. Did the robot encounter any “stuck” situations? How did you account for those?

Grading Rubric:

The lab is worth a total of 30 points and is graded by the following rubric.

Points Demonstration Code Memo

10 Excellent work, the robot performs

exactly as required

Properly commented with a

header and function comments,

easy to follow with modular

components

Follows all guidelines and

answers all questions

posed

7.5 Performs most of the functionality

with minor failures

Partial comments and/or not

modular with objects

Does not answer some

questions and/or has

spelling, grammatical,

content errors

5 Performs some of the functionality

but with major failures or parts

missing

No comments, not modular, not

easy to follow

Multiple grammatical,

format, content, spelling

errors, questions not

answered

0 Meets none of the design

specifications or not submitted

Not submitted Not submitted

Submission Requirements:

You must submit you properly commented code as a zipped folder of the Visual C# solution (.sln) and the lab

memo in a zipped folder by 11:59 pm on Sunday to the Angel Course Drop box. Your code should be modular with

functions and classes in order to make it more readable. You should use the push buttons and LCD to indicate the

robot state during program execution.

