

LECTURE 7-2

Localization and Map Making

Introduction to AI Robotics (Sec. 11.1 – 11.4)

Lecture 7-2: Localization and Map Making (C.A. Berry)

Quote of the Week

"Genius is 1 percent inspiration and 99 percent perspiration. As a result, genius is often a talented person who has simply done all of his homework."

Thomas Edison

Lecture 7-2: Localization and Map Making (C.A. Berry)

ANNOUNCEMENTS

- Quiz 14 on Sec. 11.1 11.4, Lec. 8-1 on *Monday*,
 5/3/10
- Lab 8 due on *Tuesday, 5/4/10*
- Lab 8 memo and code is due on Angel by midnight on *Thursday*, 5/6/10

OBJECTIVES

Upon completion of this lecture the student should be able to:

- Describe the difference between iconic and featurebased localization
- Be able to update an occupancy grid using either Bayesian, Dempster-Shafer or HIMM methods
- Describe the two types of formal exploration strategies

LOCALIZATION AND MAP MAKING

- The two remaining questions in *navigation* are
 - Where am I? (localization)
 - Where have I been? (map making)
- They are closely related because a robot cannot create an accurate map if it does not know where it is
- However, because shaft encoders are inaccurate this was not always feasible.

WHERE AM I?

Lecture 7-2: Localization and Map Making (C.A. Berry)

LOCALIZATION

- One way for a robot is to use odometry or *path integration*
- Because of accumulation error, the robot will eventually need to recognize a landmark to reset the odometer
- This is localization relative to the start or reference point (i.e. GPS map)
- Localization is also treated as a *state estimation* problem
- State estimation is the process of estimating the state of a system from measurements

LOCALIZATION CATEGORIES

- Iconic-based
 - Use an occupancy grid (certainty and evidence grids)
 - Fuses sensor data into a world model or map
 - Fusion done by an algorithm provide by a formal theory of evidence, Bayesian or Dempster-Shafer or HIMM
 - Hybrid architectures use the occupancy grid as a virtual sensor
 - Suited for metric map building
- Feature-based
 - Suited for topological map building
 - Uses the Markov decision process (POMDP)

LOCALIZATION METHODS

- Odometry
- Using external sensors (beacons or landmarks)
- Probabilistic Map Based Localization

Lecture 7-2: Localization and Map Making (C.A. Berry)

LOCALIZATION PROBLEMS

- The estimation process is indirect
- Measurements are noisy
- Measurements may not be available all the time

FRAME OF REFERENCE

- Frame of reference is important
 - Local/Relative: Where am I vs. where was I?
 - Global/Absolute: Where am I relative to the world frame?
- Location can be specified in two ways
 - Geometric: Distances and angles
 - Topological: Connections among landmarks

ABSOLUTE LOCALIZATION

- Proximity to reference
 - Landmarks/Beacons
- Angle to reference
 - Visual: manual triangulation from physical points
- Distance from reference
 - Time of Flight
 - Radio frequency (RF)
 - Global positioning system (GPS)
 - Acoustic
 - Signal Fading
 - Electromagnetic
 - Radio frequency
 - Acoustic

RELATIVE LOCALIZATION

- If you know your speed and direction, you can calculate where you are relative to where you were (integrate).
- Speed and direction might, themselves, be absolute (compass, speedometer), or integrated (gyroscope, accelerometer)
- Relative measurements are usually more accurate in the short term -- but suffer from accumulated error in the long term
- Most robotics research seems to focus on this

CHALLENGES OF LOCALIZATION

- Knowing the absolute position (e.g. GPS) is not sufficient
- Localization may also be required on a relative scale with respect to humans
- Cognition may require more than position, it may need to build an environmental model, map, to plan a path to a goal

SENSOR NOISE

- Perception (sensors) and motion control (effectors) play an integral role in localization
 - Sensor noise
 - Sensor aliasing
 - Effector noise
 - Odometric position estimation

BELIEF REPRESENTATION

- The fundamental issue that differentiates map-based localization systems is *representation*
 - Map representation
 - Robot's model of the environment, or a map
 - At what level of fidelity does the map represent the environment?
 - Belief representation
 - Robot's belief of its position on the map
 - Does the robot identify a single unique position?
 - Does the robot describe its position in terms of a set of possible positions?
 - How are multiple positions ranked

BAYESIAN

- The most popular evidential method for fusing evidence to translate sensor readings into probabilities using Bayes' rule.
- The conditional probability is P(H|s) and two probabilities at the same time or two different times can be fused using Bayes' rule

DEMPSTER-SHAFER THEORY

- Bayes' relies on evidence being represented by probability functions.
- Dempster-Shafer theory represents evidence as *possibilistic belief* function. This means that the function represents *partial evidence*
- Dempster's rule of combination has a conflict metric that indicates when multiple observations disagree

LOCALIZATION METHODS

- Markov Localization:
 - Represent the robot's belief by a probability distribution over possible positions and uses Bayes' rule and convolution to update the belief whenever the robot senses or moves
- Gaussian
 - Represents the continuous hypothesis belief as a normal distribution

BELIEF REPRESENTATION CHARACTERISTICS

- Continuous
 - Precision bound by sensor data
 - Typically single hypothesis pose estimate
 - Lost when diverging (for single hypothesis)
 - Compact representation and typically reasonable in processing power.

- Discrete
 - Precision bound by resolution of discretization
 - Typically multiple hypothesis pose estimate
 - Never lost (when diverges converges to another cell)
 - Important memory and processing power needed. (not the case for topological maps)

Lecture 7-2: Localization and Map Making (C.A. Berry)

С

SINGLE HYPOTHESIS BELIEF

- Advantages:
 - Given a unique belief, there is no position ambiguity
 - Facilitates decision-making at robot's cognitive level (e.g. path planning)
- Disadvantages:
 - Robot motion induces uncertainty due to effector and sensor noise
 - Forcing the position update to always generate a single hypothesis of position is challenging

MULTIPLE HYPOTHESIS BELIEF

- The robot tracks an infinite set of possible positions
- This set can be described geometrically as a convex polygon positioned on a 2D map (continuous or discrete)
- In this method, the possible robot positions are not ranked
- To rank the positions requires a model of the beliefs as a mathematical distribution (Gaussian probability density function)

MULTIPLE HYPOTHESIS GRID-BASED REPRESENTATION

- There are discrete markers for each possible position
- Each position is noted along with a confidence or probability parameter

Path of the robot

 Thousands of possible positions for a highly tessellated map

Belief states at positions 2, 3 and 4

LOCALIZATION (GRID-BASED)

WORLD MAP

SENSOR DATA

Compare current and past reading

b.

GRID-BASED LOCALIZATION

- Another strategy for position estimation is to do grid tracking
- Place a grid on the floor with clearly identifiable cells
- The robot senses change from one cell to another

GRID DESIGN

- A robot is equipped with a light sensor
- Grid must be designed to distinguish changes from one cell to another
- Must maximize the contrast between adjacent cells
- Grid cells must be larger when the robot moves faster

Lecture 7-2: Localization and Map Making (C.A. Berry)

GRID TRACKING

- Advantages
 - Can re-confirm location after short distances, eliminate errors within 1 cell range
 - Simple to implement
- Disadvantages
 - Cell size limits accuracy
 - Requires many sensor readings and large cells for truly reliable estimations
 - Requires modification of the environment
 - Result depends on print quality and sensor calibration

MULTIPLE HYPOTHESIS GRID-BASED ADVANTAGES AND DISADVANTAGES

- Advantages:
 - Robot maintains a sense of position while explicitly annotating its own uncertainty about the position
 - Partial information from sensors and effectors can update the belief
 - Robot is able to explicitly measure its own degree of uncertainty regarding position
- Disadvantages:
 - In decision making, how does the robot decide what to do next?
 - Each position must have an associated probability
 - Computationally expensive