

LECTURE 4 - 2

Common Sensing Techniques for Reactive Robots

Introduction to AI Robotics (Sec. 6.6 – 6.9)

ECE497 Lecture 4 - 2: Common Sensing Techniques for Reactive Robots (C.A. Berry)

Quote of the Week

"Just as some newborn race of superintelligent robots are about to consume all humanity, our dear old species will likely be saved by a Windows crash. The poor robots will linger pathetically, begging us to reboot them, even though they'll know it would do no good." -Anonymous

ANNOUNCEMENTS

- Lab 4 Line Following (PI Control) is due on Thursday, 4/1/10
- The lab memo and code is due on Angel by midnight on Thursday, 4/1/10
- Quiz 8 on Sec. 6.6 6.9, Lecture 4-2 on Monday,
 4/12/10

OBJECTIVES

Upon completion of this lecture the student should be able to:

- Define the following terms in one or two sentences: hue, saturation, image, pixel, image function, computer vision
- Given an RGB image and a range of color values be able to threshold the image on color and construct a color histogram
- Write computer vision code to enable a robot to imprint on and track a color

COMPUTER VISION

- Computer Vision refers to the processing of data from an image
- An *image* is a representation of data in a picture-like format where there is a physical correspondence to a scene
- The elements in image arrays are called *pixels* and maps into a small region of space
- The most common use in reactive robotics is for region segmentation to identify a region in the image with a particular color
- *Color histogramming* is used to identify a region with several colors and math the proportion in a region

STRUCTURED LIGHT (VISION, 2 OR 3D)

 Triangulation can be used to find the distance to a large set of points by replacing a 2D receiver by a CCD or CMOS camera

- The emitter must project a known patter, or structured light, onto the environment
 - Light textures
 - Collimated light with a rotating mirror
 - Laser stripe using a prism

ECE497 Lecture 4 - 2: Common Sensing Techniques for Reactive Robots (C.A. Berry)

VISION RANGING SENSORS

- In mobile robotics, it is natural to attempt to implement ranging using vision
- Vision collapses the 3D world into a 2D image
- To recover depth information look at several images of a scene
 - The images must be different
 - They should provide differ viewpoints yielding *stereo or motion algorithms*
 - Alternately, do not change the viewpoint but change the camera geometry (i.e. focus or lens iris) yielding *depth from focus algorithms*

STEREO RANGING SYSTEMS: GOAL

- Use images from dual cameras aimed at the same object
- Locate the same 'feature' in both images
- Use geometric relationships between the 2 cameras and the location of the feature in each image
- The depth of each feature can be triangulated and a depth map constructed

Right Image

Left Image

STEREO RANGING SYSTEMS: STEREO VISION

- Objects in left camera appear horizontally shifted from objects seen in right camera
- The size of the shift is the disparity
- The ideas is to find a correspondence (or match) between points in one image with points in other image

STEREO RANGING SYSTEMS: STEREO VISION

- It is difficult to find corresponding pixels in 2 images
- It is better to find the most likely match
- In some cases, the pixel in one image may not be visible in the other (*occlusion*)

STEREO RANGING SYSTEMS: STEREO VISION

A more realistic scenario is when the cameras do not lie on the same plane

 $z = (f \cdot b)/(d + (f \cdot b)/z_o)$

STEREO VISION

 3D information can be computed from two

images

- Compute *disparity*
 - displacement of a point in
 2D between the two images
- Disparity is inverse proportional with actual distance in 3D
- Compute relative positions of cameras

STEREO VISION

- 1. Distance is inversely proportional to *disparity*
 - closer objects can be measured more accurately
- 2. Disparity is proportional to b.
 - For a given disparity error, the accuracy of the depth estimate increases with increasing baseline b.
 - However, as b is increased, some objects may appear in one camera, but not in the other.
- 3. A point visible from both cameras produces *a conjugate pair*
 - Conjugate pairs lie on *epipolar line*

STEREO RANGING SYSTEMS: CORRESPONDENCE

- Desired characteristics
 - Corresponding image regions are similar
 - Each point matches a single point in the other image (unlikely)
- Two main matching methods
 - Feature-based
 - Start from image structure (e.g. edges)
 - Correlation-based
 - Start from grey levels

STEREO RANGING SYSTEMS: CORRELATION

- There are several methods
 - Sum of Squared Difference (SSD)
 - Dynamic Programming (DP)
 - Graph Cut (GC)

- Belief Propagation (BP)
- Markov Random Fields (MRF)

STEREO VISION: SSD CORRELATION

 Take a small area of data in left image and compare it with similar-size area in the right image along the same *epipolar line* (i.e. same height in the image if the cameras are horizontally level)

STEREO VISION: CORRELATION

- To improve matching
 - Apply image filters before and after processing
 - Identify corners and edges to help fill in areas with no data available
 - Use sensor fusion (i.e. data from other sensors) to fill in missing gaps
 - Project structure light onto objects to improve matches

ECE497 Lecture 4 - 2: Common Sensing Techniques for Reactive Robots (C.A. Berry)

STEREO VISION EXAMPLE

Extracting depth information from a stereo image

al

- a1 and a2: left and right image
- b1 and b2: vertical edge filtered left and right image; filter = [1 2 4 - 2 - 10 - 2 4 2 1]
- c: confidence image: bright = high confidence (good texture)
- d: depth image: bright = close; dark = far

VISION FROM MOTION

- Take advantage of motion to facilitate vision
- Static system can detect moving objects
 - Subtract two consecutive images from each other ⇒ the *movement* between frames
- Moving system can detect static objects
 - At consecutive time steps continuous objects move as one
 - Exact movement of the camera should be known
- Robots are typically moving themselves
 - Need to consider the movement of the robot

COLOR TRACKING SENSORS

 Unlike ultrasonic and infrared range finders, vision systems can also detect and track color in the environment

COLOR-TRACKING SENSORS

- There is no correspondence problem to be solved in such algorithms (it only requires one image)
- By using sensor fusion, color tracking can produce significant information gains

STEREO RANGING SYSTEMS

- Advantages
 - Better resolution than ultrasonic and infrared
 - Very reliable when environment is sufficiently cluttered
 - Often packaged with software to calculate depth

- Disadvantages
 - Cannot identify mirrors and/or glass
 - Sensitive to lighting conditions
 - Poor performance when environment lacks features
 - More expensive than ultrasonic and infrared
 - Larger than ultrasonic and infrared
 - Difficult to calibrate

ECE497 Lecture 4 - 2: Common Sensing Techniques for Reactive Robots (C.A. Berry)

FEATURE EXTRACTION: SCENE INTERPRETATION

- A mobile robot must be able to determine its relationship to the environment by sensing and interpreting the measured signals.
 - A wide variety of sensing technologies are available
 - However, the main difficulty lies in interpreting these data, that is, in deciding what the sensor signals tell us about the environment.
 - To extract information from one or more sensor readings to generate a higher level *percept* to inform the robot's environment model and action is *feature extraction*

ECE497 Lecture 4 - 2: Common Sensing Techniques for Reactive Robots (C.A. Berry)

FEATURE EXTRACTION: FEATURES

- Features are distinctive elements or geometric primitives of the environment.
- Good features are always perceivable and easily detectable form the environment
- They usually can be extracted from measurements and mathematically described.
 - *low-level features* include *geometric primitives* like lines, circles
 - high-level features include edges, doors, tables or trash cans.

In mobile robotics, features help for localization and map building.

FEATURE EXTRACTION: RANGE DATA

- Laser, Ultrasonic and vision-based ranging extract features that are geometric primitives such as line segments, circles, corners, edges
- Most other geometric primitives are too complex and no closed form solutions exist.
- However, lines segments are very often sufficient to model the environment, especially for indoor applications.

RANGE HISTOGRAM FEATURES ANGULAR HISTOGRAM

- An angular histogram is a simple way of combining characteristic elements of an image
 - A 360 degree range can is performed
 - The hits are recorded on a map
 - An algorithm measures the relative angle between adjacent hits

EXTRACTING OTHER GEOMETRIC FEATURES

- A robot must make use of multiple features simultaneously, comprising a *feature set* appropriate for its operating environment
- *Corner features* are defined as a point feature with an orientation
- Step discontinuities are a step change perpendicular to the direction of travel (concave or convex)
- Doorways are opening of the appropriate dimension in the wall, characterized by their width

VISUAL APPEARANCE: IMAGE PREPROCESSING

- Conditioning
 - Suppresses noise
 - Implemented with
 - gray-scale modification (e.g. thresholding)
 - (low pass) filtering
- Labeling
 - Determination of the spatial arrangement of the events, i.e. searching for a structure
- Grouping
 - Identification of the events by collecting together pixel participating in the same kind of event
- Extracting
 - Compute a list of properties for each group
- Matching

ECE497 Lecture 4 - 2: Common Sensing Techniques for Reactive Robots (C.A. Berry)

FEATURE EXTRACTION: FILTERING AND EDGE DETECTION

- The single most popular spatially localized feature is *edge detection*
- Edges
 - Locations where the brightness undergoes a sharp change,
 - Differentiate one or two times the image
 - Look for places where the magnitude of the derivative is large.
 - Noise, thus first filtering/smoothing required before edge detection
- Gaussian Smoothing
 - Removes high-frequency noise
 - Convolution of intensity image I with G

EDGE DETECTION

- Edge :a curve in the image across which there is a change in brightness
- Finding edges
 - Differentiate the image and look for areas where the magnitude of the derivative is large
- Difficulties
 - Not only edges produce changes in brightness: shadows, noise
- Smoothing
 - Filter the image using *convolution*
 - Use filters of various orientations
- Segmentation: get objects out of the lines

FEATURE EXTRACTION: EDGE DETECTION

- Ultimate goal of edge detection
 - an idealized line drawing.
- Edge contours in the image correspond to important scene contours.

FEATURE EXTRACTION: NONMAXIMA SUPPRESSION

- Output of a Canny edge detector is usually a black and white image where the pixels with gradient magnitude above a predefined threshold are black and all the others are white
- Nonmaxima suppression sets all pixels to zero that do not represent the local maxima
- Nonmaxima suppression generates contours described with only one pixel thinness

FEATURE EXTRACTION EXAMPLE

GROUPING, CLUSTERING: ASSIGNING FEATURES TO FEATURES Image: State of the st

Connected Component Labeling

ECE497 Lecture 4 - 2: Common Sensing Techniques for Reactive Robots (C.A. Berry)

35

FEATURE EXTRACTION: FLOOR PLANE EXTRACTION

- Vision based identification of a traversable path
- The processing steps
 - As pre-processing, smooth I_f using a Gaussian smoothing operator
 - Initialize a histogram array H with n intensity values
 - For every pixel (x,y) in I_f increment the histogram:

FEATURE EXTRACTION: WHOLE-IMAGE FEATURES

- Whole-Image features are not designed to identify specific spatial structures
- They sever as a compact representation of the entire local region
- Extract one or more features that are correlated with the robot's position for localization

