
Designing a Reactive Implementation

Introduction to AI Robotics (Ch. 5)

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

LECTURE 3 - 2

Quote of the Week

“A common mistake people make when trying to
design something completely foolproof is to
underestimate the ingenuity of complete fools.”

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

ANNOUNCEMENTS

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

 Lab 3 - Wall Following (PD Control) is due on

Thursday, 3/25/10

 The lab memo and code is due on Angel by

midnight on Thursday, 3/25/10

 Quiz 6 on Ch. 5, Lecture 3-2 on Monday, 3/29/10

OBJECTIVES

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

Upon completion of this lecture the student should be
able to:

 Use schema theory to design and program behaviors

 Describe a complete behavioral system

 Draw a behavior table

 Define the terms: releaser, perceptual schema, motor
schema for a behavior

 Describe the two methods for assembling and
coordinating primitive behaviors

 Be able to represent a sequence of behaviors using a
state diagram

EMERGENT BEHAVIOR
 The reactive movement involves a robot running a very

small set of behaviors which were combined internally to
produce an overall emergent behavior

 All robot behaviors result from the interaction of the
robot’s controller and the environment.

 If these components are simple then the resulting
behavior may be predictable

 If the environment is dynamic or the controller has several
interacting components then the resultant robot behavior
may be a surprise

 If the unexpected behavior has some structure, pattern, or
meaning it is often called emergent

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

WALL FOLLOWING
EMERGENT BEHAVIOR
 Rules:
 If left whisker bent, turn right
 If right whisker bent, turn left
 If both whiskers bent, back

up and turn left
 Otherwise, keep going

 Based upon these behaviors
the robot will follow a wall
although the robot knows
nothing about walls and it is
not explicit in the rules

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

THE WHOLE IS GREATER THAN
THE SUM OF ITS PARTS

 Emergent behavior appears to produce more than
what the robot was programmed to do.

 We get more than we built in or something for
nothing

 Roboticists sometimes exploit this potential to design
clever and elegant controllers

 In particular, reactive and behavior-based systems are
designed to take advantage of such interactions

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

FLOCKING EXAMPLE
 To make robots flock together when they cannot

communicate with each other, have their own rules,
and own local sensory data, use emergent behavior

 This can be achieved with the following rules

 Don’t get too close to other robots or obstacles

 Don’t get too far from other robots

 Keep moving if you can

 To get the robots to move to a certain destination use
another rule which moves each robot toward the goal
point

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

C:/Documents and Settings/berry123/My Documents/~Courses/ECE497-Mobile Robotics/Spring 08-09/Lectures/create_construction.mov

COMPONENTS OF EMERGENCE
 Emergence depends on two components

 Existence of an external observer to see the behavior
and describe it

 Access to the innards of the controller to verify that the
behavior is not explicitly specified in the system

 Alternate definition of emergent behavior

 A structured (patterned, meaningful) behavior that is
apparent at one level of the system (observer’s
viewpoint) but not at another (controller’s/robot’s
viewpoint)

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

ARCHITECTURES AND EMERGENCE
 Different control architectures affect the likelihood of

generating emergent behavior in different ways

 Reactive and behavior-based systems employ parallel
rules and behaviors which interact with each other
and the environment which provide the perfect
foundation for exploiting emergent behavior

 Deliberative and hybrid systems do not have parallel
interaction and would require environment structure
and thus minimize emergence

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

BEHAVIOR-BASED CONTROL
 Behavior-based control (BBC) incorporates the best of

reactive systems but does not involve a hybrid solution

 BBC is inspired by biological systems

 BBC was inspired by the fact that

 Reactive systems are too inflexible, incapable of
representation, adaptation, or learning

 Deliberative systems are too slow and cumbersome

 Hybrid systems require complex means of interaction among
the components

 BBC is closest to reactive control and farthest from
deliberative control

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

BEHAVIOR-BASED ARCHITECTURE

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

BEHAVIOR DEFINITION
 Behaviors achieve and /or maintain particular goals (i.e.

homing, wall following)

 Behaviors are time extended, not instantaneous. They
may take some time to achieve and/or maintain their goals

 Behaviors can take input from sensors and also other
behaviors. Behaviors can send outputs to effectors and to
other behaviors

 Behaviors are more complex than actions. A reactive
system may use simple actions like stop, turn right.

 BBC may have behaviors such as find object, follow wall,
get recharged, hide from the light.

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

ABSTRACTION
 Behaviors can be designed at a variety of levels of

detail or description. This is called their level of
abstraction.

 To be abstract is to take details away and make things
less specific

 Behaviors can take different amounts of time and
computation

 Behaviors are flexible and this is one of the key
advantages of BBC

 The power and benefit is also in the way they are
organized and put together in the control system

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

PRIMITIVE AND ABSTRACT BEHAVIORS

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

 A primitive behavior is composed of only one
perceptual schema and one motor schema so there is
no need for a coordinated control program

 Primitive behaviors are monolithic that only do one
thing and are programmed as a single method

 Behaviors assembled from other behaviors or that
have multiple perceptual schema and motor schema
are abstract behaviors

 A behavior puts the percept by the perceptual schema
in a local place where the motor schema can get it

EXPRESSING ROBOTIC BEHAVIOR
 There are several methods available for expressing

robotic behavior including:

 Stimulus-response (SR) diagrams
 Use for graphic representation of specific behavioral

configurations

 Functional Notation
 Used for clarity in design of systems

 Finite state acceptor (FSA) diagrams
 Used for temporal sequencing of behaviors

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

SR DIAGRAM FOR
CLASSROOM NAVIGATION ROBOT

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

FUNCTIONAL NOTATION FOR
CLASSROOM NAVIGATION ROBOT

B(S) = R

The behavior b when given stimulus s yields response r

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

Coordinate-behaviors

[

move_to_class(detect-class-location),

avoid_objects(detect-objects),

dodge_students (detect-students),

stay_to_right(detect-path)

return motor_response

]

BEHAVIOR DEFINITION

BEHAVIOR

B

S: Sensory

Input
R: Pattern

of Motor

Actions

(responses)

A behavior is a mapping of sensory inputs to a pattern of motor

actions which are then used to achieve a task.

Notation: B(S)=R

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

BEHAVIORS AS OBJECTS IN
OBJECT-ORIENTED PROGRAMMING

 Objects consist of data and methods

 A schema consists both of the knowledge of how
to act and/or perceive

 A behavior is a schema that consists of a
perceptual schema and motor schema

 A schema will be a class

 The schema class has an optional method called a
coordinated control program

 The coordinated control program is a function that
coordinates any methods or schemas in the
derived class

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

BBC DESIGN PRINCIPLES
 Behaviors are typically executed in parallel/concurrently

 Networks or behaviors are use to store state and construct
world models/representations

 Behaviors are designed to operate on compatible time
scales

 BBC have the following key properties

 The ability to react in real time

 The ability to use representations to generate efficient
behavior

 The ability to use uniform structure and representation
through the system

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

TIME AND MODULARITY AND
REPRESENTATION
 BBC is modular by using a collection of behaviors

 These behaviors are relatively similar in terms of execution
time

 It is based on reactive philosophy where behaviors are
incrementally added to the system

 The behaviors are executed concurrently in parallel

 Behaviors are activated in respond to internal and/or
external conditions

 Behaviors are more expressive than simple reactive rules

 Behaviors are more complex and more flexible than
reactive rules and can be used in clever ways to program
robots

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

DESIGNING A BEHAVIORAL SYSTEM

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

Describe the task

Describe the robot

Describe the environment

Specification
& Analysis:
ecological

niche

Implement & refine each behavior

Test each behavior independently

Implementation
& unit testing

Test behaviors together
System
Testing

Describe how the robot should
act in response to its environment Design

PHOTOPHILIC BEHAVIOR DESIGN

Design a robot that is attracted to light. It will head
toward the light and if it encounters an obstacle, turn
left or right in the direction to favor the light. If there is
not light the robot will sit and wait. If an obstacle
appears the robot will turn and run away

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

PHOTOPHILIC: BEHAVIOR TABLE

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

Releaser Behavior Motor
Schema

Percept Perceptual
Schema

Light Photophilic move2Light() light:
direction &
strength

brightness(dir),
atLight()

Range Obstacle
avoidance

avoid()

runaway()

proximity obstacle()

Design a robot that is attracted to light. It will head
toward the light and if it encounters an obstacle, turn
left or right in the direction to favor the light. If there is
not light the robot will sit and wait. If an obstacle
appears the robot will turn and run away

FINITE STATE AUTOMATA (FSA)

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

 FSA are a set of
mechanisms that describe
what a program should
be doing a given time or
circumstance

 The FSA can be written as
a table or state diagram

State, q s, input d (q, s)

journey not at class journey

journey Error Lost

journey reached class at class

at class all at class

lost all Lost

FSA Behavioral analog

M Finite State Machine

K All the behaviors for a task

S The releasers for each behavior
in K

d The function that computes the
new state, transition function

s The behavior the robot starts in
when it is turned on

F The behaviors the robot must
reach to terminate

q Current state

s Current input

FINITE STATE ACCEPTOR (FSA) DIAGRAMS FOR
CLASSROOM NAVIGATION ROBOT

 FSA diagrams describe the aggregations and sequences
of behaviors

 It explicitly shows the active behavior at any given time
and the transitions between them

 the circle denotes the state where behavior is active and
the arrows represent the stimulus input and response

 Note that Journey includes move_to_class,
avoid_objects, dodge_students and stay_right

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

BEHAVIOR ARBITRATION VERSUS
BEHAVIOR FUSION

 Behavior Arbitration is picking one
behavior /action

 Behavior Fusion is combining multiple
behaviors /actions

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

BEHAVIOR ARBITRATION
 Arbitration-based behavior coordination is also called

competitive behavior because candidate behaviors
compete but only one can win

 In a fixed priority hierarchy, the behaviors have pre-
assigned priorities

 In a dynamic hierarchy, the behavior priorities change
at run-time

 Subsumption architecture uses a fixed priority
hierarchy of behaviors. Some hybrid systems also
employ fixed priority hierarchy

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

BEHAVIOR FUSION
 Behavior fusion is the process of combining multiple

possible candidates into a single output
action/behavior

 Behavior fusion is also called a cooperative method
because it combines outputs of multiple behaviors to
produce a final result

 This result may be an existing behavior or a new one
(emergent behavior)

 There could be weighting or have some logic in the
system to prevent certain combinations and outcomes

ECE 497 Lecture 3-2: Designing a Reactive Implementation (C.A. Berry)

