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Class Day Date Topic    Reading Assignments 
Due 

1-1 M 12/01 Mutual inductance 6.4  
1-2 T 12/02 Mutual inductance 6.5 Pre- Lab 11 
1-L W 12/03 Lab 11. Instrumentation Amplifier   
1-3 R 12/04 The Ideal transformer 9.11 HW 1 
2-1 M 12/08 Natural response of 1st order circuits 7.1 - 2 Quiz 2 
2-2 T 12/09 Step response of 1st order circuits 7.3 - 4 Pre-Lab 12 
2-L W 12/10 Lab 12. Self & Mutual Inductance   
2-3 R 12/11 Natural & Step response of 2nd order circuits 8.1-4  HW 2 
3-1 M 12/15 Natural & Step response of 2nd order circuits 8.1-4 Quiz 3 
3-2 T 12/16 Circuit elements and analysis in the s domain 13.1 - 2 Pre-Lab 13 
3-L W 12/17 Lab 13. Step Response Design   
3-3 R 12/18 Circuit analysis in the s domain 13.2 HW 3 

Winter Break 
4-1 M 1/05 Applications in s domain 13.3 & 12.6 Quiz 4 
4-2 T 1/06 Applications in s domain 13.3 & 12.6 Pre-Lab 14 
4-L W 1/07 Lab 14. Gyrator   HW 4 
4-3 R 1/08 Exam 1 (up through 4-2)   
5-1 M 1/12 Initial/final value theorem, Transfer function & 

the steady-state sinusoidal response 
13.4 & 12.8-9 
13.7 

Quiz 5 

5-2 T 1/13 Introduction to filters 14.1-3 Pre-Lab 16 
5-L W 1/14 Lab 16. Phase-Shift Oscillator    
5-3 R 1/15 Low-pass Filters passive & active 14.2 & 15.1 HW 5 
6-1 M 1/19 High-pass Filters passive & active 14.3 &15.1 Quiz 6 
6-2 T 1/20 First order filters & Bode diagrams E.1-2 Pre-Lab 15 
6-L W 1/21 Lab 15.Steps & Steady State   
6-3 R 1/22 Second order filters & Bode diagrams  14.4-5  HW 6 
7-1 M 1/26 Bandpass filters & Bode diagrams  14.4 Quiz 7 
7-2 T 1/27 Bandreject filters & Bode diagrams 14.5  
7-L W 1/28 Lab 17. Lab Practical Test   
7-3 R 1/29 Filter scaling 15.2 HW 7
8-1 M 2/02 Op Amp Bandpass & Bandreject filters 15.3 Quiz 8 
8-2 T 2/03 Higher order op amp filters 15.4 Pre-Lab 18 
8-L W 2/04 Lab 18. Bode Diagram Design   
8-3 R 2/05 Exam 2 (up through 7-3)  HW 8-due 2/6 
9-1 M 2/09 Butterworth filters 15.4 Quiz 9 
9-2 T 2/10 Narrowband bandpass filters 15.5 Pre-Lab 19 
9-L W 2/11 Lab 19. Low-Pass Filter Design   
9-3 R 2/12 Narrowband bandreject filters 15.5 HW 9 
10-1 M 2/16 Terminal equations and Two-port parameters 18.1-2 Quiz 10 
10-2 T 2/17 Terminal equations and Two-port parameters 18.1-2 Pre-Lab 20 
10-L W 2/18 Lab 20. Poles on Planes   
10-3 R 2/19 Analysis of terminated two-port circuits 18.3 HW 10 
Finals Week FINAL EXAM (up through 10-3)   
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Course Information 

Instructor: 

Carlotta Berry 
D‐211 Moench Hall 
812‐877‐8657 
carlotta.berry@rose‐hulman.edu 
http://www.rose‐hulman.edu/~berry123 
 
Description: 
Electrical and computer engineering (ECE) deals with the application of electrical and electronic 
technology to the daily needs of people.  Almost every aspect of their lives and occupations are 
controlled by ECE.  To understand the details of ECE it is necessary to study circuit analysis.  The 
reason for this is that it is the one thing that ties all branches of ECE together; as such, it lays 
the foundation for analysis, design, and operation of electrical devices and systems.  
This class helps provide a foundation for you to build on. You will continue, in subsequent ECE 
courses, to update the knowledge you gain here. Since this course is the prerequisite for just 
about everything you will be doing in ECE, it is vital that you gain a confident grasp of circuit and 
systems fundamentals.  
The Calendar gives details of what we’ll be covering.  You should follow it closely. 
 
Text :   J.W. Nilsson & S.A. Riedel, Electric Circuits, 8th edition, Prentice Hall, 2008. 
 
Office Hours:   M – R, 7th hour, 1:35 – 2:25 pm or by appointment 

What is expected of You: 

First and foremost, professional work is the norm in this course.  All of your written work and 
your conduct in class are to be at the level of one who is studying a profession—the profession 
of engineering.  This means a number of things: 

1. Your work is neatly done in a professional manner, using formats specified. 
2. Your work is honestly done.  You are encouraged to discuss course material with 

classmates to help each other understand and assimilate the concepts.  Nevertheless, I 
distinguish between helping someone understand concepts and providing them with 
specific answers.  I expect you’ll work individually on homework without reference to 
others’ work. 

3. Your work is done on time. 

Attendance: 

Regardless of whether formal attendance is taken, attendance at each class is expected.  As a 
rule of thumb you should consider yourself seriously behind if you miss more than four classes 
in a four credit‐hour course.  According to our Academic Rules and Procedures, “A student 
whose total absences in a course, excused or unexcused, exceed two per credit is liable to fail 
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the course.” Eight absences in this course are grounds for failure.  Missing an attendance check 
due to lateness may be counted as an absence. 
 
If you miss a lab with an excused absence you need to make it up within 1 week without 
penalty. If you miss a lab without an excused absence, you need to make it up within 1 week 
and you will receive a grade of zero. If you come to lab more than 15 minutes late you need to 
complete the lab on your own. 

Grading: 

Grades will be assigned at the end of the quarter based on the grade weights and grading scale 
shown below: 

Midterm Test I  20%   90 – 100  A 

Midterm Test II  20%   85 – 89  B+ 

Final Exam   30%   80 ‐ 84  B 

Homework and Quizzes 10%   75 ‐ 79  C+ 

Labs and Memos  15%   70 ‐ 74  C 

Lab Practical Test  5%    65 ‐ 79  D+ 

      60 ‐ 64  D 

      Below 60 F 

Independent of point totals: 

• Satisfactory completion of each of the ten lab projects is required in order to receive a 
passing grade in the course,  

• You must earn a passing overall weighted midterm and final exam average in order to 
receive a passing grade in the course, and 

Homework: 

The homework is intended to help you to understand the concepts presented in the course, 
and to provide you with practice in problem solving. 
• Problem sets are due each Thursday in class before the bell rings at the beginning of class.   

Assignments and solutions will be distributed using ANGEL.   
• Homework turned in after the bell rings is late and will incur a 20% penalty. 
• Homework turned in after 8 am on the day following the due date will not be accepted.   
• Arrange to turn in your homework early if you will be away for job interviews, athletic 

events, etc. 
• The required format is described in the Sophomore Engineering Curriculum Guidelines and 

Standards for Writing Assignments. It is your responsibility to make your methods and 
results clear to the grader. 
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Homework will be graded using a restricted scale of 0, 1, 2, 3, or 4: 
 
  4  Problem worked completely correctly. 
  3  Problem worked with minor errors. 
  2  Problem worked with substantial errors. 
  1  Problem attempted, but with no understanding. 
  0  Problem not attempted or unacceptable. 

Preparation for the laboratory sessions: 

Pre‐lab exercises are due each Tuesday in class before the bell rings at the beginning of lab.   
Each student should do the pre‐lab in their notebook and make a photocopy to turn‐in.  The 
solutions to the pre‐lab may be presented at the start of the lab period.  Any team that has not 
completed the pre‐lab, must do it at the beginning of lab for zero credit.  This team must still 
finish the laboratory project within the allotted time. 

Laboratory notebooks: 

Laboratory notebooks will be collected at the conclusion of each laboratory period.  The 
laboratory notebook will be graded and both members of the team share the notebook grade.  
Each team member must alternate submission of the lab notebook as well as circuit building on 
a weekly basis.  A memorandum will be submitted for one laboratory projects and this will be 
an individual grade.   

Exams: 

On both tests you will be allowed to use one 8½ x 11 page of notes (both sides) that you have 
made but may not use anyone else's notes.  You should prepare for tests as though they were 
closed‐book so that you can finish on‐time; reference material should only be a back‐up.  In the 
final exam, you are permitted to use two 8½ x 11 pages of notes (both sides). 
Missed exams will not be made up.  The final exam grade will be used to replace a missing test 
grade in the case of excused absences.  Excused absence from an examination normally 
requires advance approval or formal documentation of an emergency.  An examination that is 
missed for an unexcused reason will be given a grade of zero.  Students are not excused from 
scheduled exams for intramural athletics or fraternity events.   

Academic accommodation: 

Those students with documented special needs may request extra time on timed tests. 
Students need to contact me at least 2 business day prior to each exam to make the necessary 
arrangements.  
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Lecture 1-1: Mutual Inductance 
Reading: 6.4 

 
Objectives: To define inductance, self-inductance and mutual inductance 
 To apply the dot convention to write the mesh equations of a mutual inductance 

circuit 
 

Inductance is a circuit parameter used to describe an inductor.  Inductance is symbolized by the 
letter L and is measured in henrys (H).   It is represented graphically as a coiled wire.  It is a 
conductor linking a magnetic field.   
 
 
 
 
 
 
 

i

+  v -
 
self - inductance is a parameter that relates a voltage to a time-varying current in the same 
circuit. 
 
When two circuits are linked by a magnetic field, mutual inductance is the parameter that relates 
to the voltage induced in a second circuit by the time-varying current in the first circuit. 
 

  
 
 
The self-inductances of the two coils are labeled L1 and L2 and the mutual inductance is labeled 
M. 
 
The dot convention states that when the reference direction for a current enters the dotted 
terminal of a coil, the reference polarity of the voltage that it induces in the other coil is positive 
at its dotted terminal. 
 



 
 

ECE 200 CIRCUITS & SYSTEMS  Winter 2007/08 
 

C.A. Berry Lec1-1.doc Page 2 of 4 

 

 

i1 enters the dotted terminal of coil 1 so v2 is 
positive at the dotted terminal of coil 2. 
 

v2 = +Mdi1/dt

 

i1 enters the dotted terminal of coil 1 so v2 is 
positive at the dotted terminal of coil 2. 

 
 

v2 = -Mdi1/dt

 

i2 leaves the dotted terminal of coil 2 so v1 is 
negative at the dotted terminal of coil 1. 

 
v1 =  -Mdi2/dt

 

i2 leaves the dotted terminal of coil 2 so v1 is 
negative at the dotted terminal of coil 1. 

 
v1 =  Mdi2/dt

 
There are also two dot conventions for coupled coils in series 
Series – 
adding 

 

i enters the dotted terminal of coil 
1 and coil 2 
vab =  (L1+L2+2M)di/dt 
Ltot = L1+L2+2M

Series - 
opposing 

 

i enters the dotted terminal of coil 
1 and leaves the dotted terminal of 
coil 2 
vab =  (L1+L2 - 2M)di/dt 
Ltot = L1+L2 - 2M
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Example 6.4.1: 
Calculate the total inductance for the following circuit. 

 
 
 
 
 
Example 6.4.2: 
Determine the inductance of the three series-connected inductors in the following figure. 

 

 
 
 
Example 6.4.3: 
Write a set of mesh-current equations for the following circuit. 
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Example 6.4.4: 
Write a set of mesh-current equations for the following circuit. 
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Lecture 1-2: A Closer Look At Mutual Inductance 
Reading: 6.5 

 
Objectives: To define self-inductance and the coefficient of coupling 
 To relate the coefficient of coupling to mutual inductance 
 To calculate energy for a mutual inductance circuit 

 
Faraday’s law states that v = dλ/dt, where λ is the flux in weber-turns.  
The flux linkage is  λ = Nφ, where φ is the magnetic field in Webers (Wb) and the number of 
turns linked by the field (N).   
The magnitude of the flux, φ is related to the magnitude of the coil current by φ = PNi 
P is the permeanance and is a quantity that describes the magnetic properties of the space in the 
inductors measured in Webers/Ampere (Wb/A). 
For circuits with two magnetically coupled coils M12 = M21 = M 
L1 = N1

2P1 

L2 = N2
2P2 

In a linear system, 
2

1

2

1

L
L

N
N

= because P1  = P2 

The coefficient of coupling,  k, can be used to relate self-inductance and mutual inductance. 
 

M = 21LLk  

 
The coefficient of coupling must lie between 0 and 1 (0 ≤ k ≤ 1) 
k = 0 No common flux, NOT coupled 
k = 1 Perfectly coupled 
k < 0.5 Loosely coupled 
k > 0.5 Tightly coupled 
 
The total energy stored in coupled coils is defined by w(t) = .5L1i1

2 + .5L2i2
2 ± Mi1i2  

+ Mi1i2  - both currents enter or leave the dotted terminal 
- Mi1i2  - one current enters and one current leaves the dotted terminal 
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Example 6.5.1: 
For the following circuit, determine the energy stored in the coupled inductors at  = 1.5 seconds. 
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Example 6.5.2: 
Find the Thevenin and Norton equivalent across terminals a and b for the following circuit. 
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Example 6.5.3: 
Determine currents I1, I2, and I3 in the following circuit.  Assume thatω = 1000 rad/s and find 
the energy stored in the coupled coils at t = 2 ms. 
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Lecture 1-3: The Ideal Transformer 
Reading: 9.11 

 
Objectives: To define the ideal transformer and terminal characteristics 
 To define the dot convention for the analysis of circuits with ideal transformers 
 To apply reflection to calculate voltage and currents in an ideal transformer circuit 

 
An ideal transformer consists of two magnetically coupled coils having N1 and N2 turns that 
exhibits the following three properties: 
 i. the coefficient of coupling is unity (k = 1) 
 ii. the self inductance of each coils is infinite (L1 = L2 = ∞) 
 iii. coil losses due to resistance are negligible 
 

 
 
There are two characteristics for the terminal behavior of an ideal transformer. 

1. 
2

2

1

1

N
V

N
V

=  

2. |I1N1| = |I2N2| 
The primary winding coil and its circuit are called the primary side of the transformer 
The secondary winding coil and its circuit are called the secondary side of the transformer 
 
The turns ratio for a transformer is n  =N2/N1 where the primary winding has N1 turns and the 
secondary winding has N2 turns. 
 
n = 1 Isolation transformer
n >1 Step up transformer  

(voltage is increased from the primary to secondary side) 
0 < n <1 Step down transformer  

(voltage is decreased from the primary to secondary side) 
 
The convention for determining the polarity for the currents and voltages on the transformer use 
the following rules. 

i. if the coil voltages V1 and V2 are both positive or negative at the dot-marked 
terminals, use a plus sign in the voltage relationship otherwise use a negative 

ii. if the coil currents I1 and I2 are both directed into or out of the dot-marked 
terminal, use a minus sign in the current relationship otherwise use a positive. 

 
The graphical symbol for an ideal transformer is given in the following table for the voltage and 
current conventions 
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Circuit Voltages Currents 

 

n
N
N

V
V

1

2

1

2 ==  
n
1

N
N

I
I

2

1

1

2 −=−=  

 

n
N
N

V
V

1

2

1

2 −=−=  
n
1

N
N

I
I

2

1

1

2 ==  

 

n
N
N

V
V

1

2

1

2 −=−=  
n
1

N
N

I
I

2

1

1

2 −=−=  

 

n
N
N

V
V

1

2

1

2 ==  
n
1

N
N

I
I

2

1

1

2 ==  

 
 
Reflected Impedance 
Ideal transformers can also be used to raise or lower the impedance level of a load. 

 
The input impedance from the primary side is   
Zin = V1/I1 = (1/n2) (V2/I2) = (1/n2) (ZL) 
It is possible to simplify the analysis of an ideal transformer by reflecting the secondary 
impedance to the primary side and vice versa. 
 
To reflect the secondary side to the primary side: 
 1. the primary side remains the same 
 2. the secondary impedance is reflected to the primary side as ZL′ = ZL/n2

 3. the secondary voltage becomes V2′ = V2/n 
 4. the secondary current becomes I2′ = nI2   
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To reflect the primary side to the secondary side: 
 1. the secondary side remains the same 
 2. the primary impedance is reflected to the secondary side as ZS′ = n2ZS

 3. the primary voltages become Vs′= nVs and V1′ = nV1

 4. the primary current becomes I1′ = (1/n)I1 

 
Example 9.11.1: 
Determine I1 and I2 for the following circuit by reflecting the secondary to the primary side. 
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Example 9.11.2: 
Determine the steady state expressions i1, i2, v1, and v2 for the following circuit given that 
 vs(t) = 25cos1000t V . 
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Lecture 2-1: The Natural response of RL and RC Circuits 
Reading: 7.1-2 

 
Objectives: To analyze the natural response of 1st order systems 

To analyze the step response of 1st order systems 
To demonstrate the general solution for step and natural responses 

 
The purpose of this week’s lecture will be to analyze RL (resistor-inductor) and RC (resistor-
capacitor) circuits.   
 
The first method of analysis is the natural response which occurs when an inductor or capacitor 
is connected to a DC source and is suddenly disconnected and the stored energy is released to a 
resistive network.  
 
The second method of analysis is the step response which occurs when a DC source is suddenly 
connected to an inductor or capacitor and it begins to store energy. 
 
The third method of analysis describes the general method that can be used to find the step and 
natural responses of RL or RC circuits. 
 
Since RL and RC circuits can also be described by first-order differential equations they are also 
known as first-order circuits.    
 

Source-free RL Circuit Source-free RC Circuit 
 
7.1 The natural response of an RL circuit 
Example 7.1.1: 
Use KVL to find the expression for the current through the inductor in the following circuit 
assuming it is initially charged to Io at t = 0, (i.e. iL(0) = I0).  
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The time constant for an RL circuits is τ = L/R.  This is significant because when the time since 
the DC source was removed exceeds 5 time constants, the current through the inductor is less 
than 1% of its initial value.  The time when the current through the inductor is changing or 
discharging before 5 time constants is referred to as the transient response.  The response that 
exists a long time after DC switching is the steady-state response. 
 
The following figure demonstrates the affect the value of the time constant has on the response. 

 
 
It should be noted that current through an inductor cannot change abruptly [i(0-) = i(0+) = Io] 
although the voltage can change abruptly.  The voltage will change abruptly dependent upon 
whether the inductor is storing or discharging energy.  The current is an exponential decaying 
curve after the DC source has been removed.  Recall that under DC conditions an inductor acts 
like a short circuit.   
 
Using Ohm’s Law, the voltage across the resistor is given by vR(t) = IoR for t≥ 0+ because the 
voltage across the inductor relates to the first derivative thus vR(0-) = 0 , vR(0+) = IoR. 
 
 

Current through the inductor Voltage across the resistor 
 
The power dissipated in the resistor is given by p = Io

2Re-2(R/L)t (W), t ≥ 0 
The energy delivered to the resistor is given by .5LIo

2(1 – e-2(R/L)t) (J), t ≥ 0 
The initial energy stored in the inductor is given by w = 0.5LIo

2 (J) 
 
To find the natural response of an RL circuit, 
 i. Find the initial current Io through the inductor 
 ii. Find the time constant of the circuit, τ = L/Req 
 iii Use the expression, i(t) = Io e-(R/L)t  , to find i(t) using Io and τ. 

t

vR
IoR

(I oR)e -t/τ
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Example 7.1.2: 
For the following circuit determine, iL(t), vL(t) and iR(t) for t ≥ 0.   

    
 
 
 
 
 
 
 
 
 
 
 
 
Example 7.1.3 
For the following circuit, determine the iL(t) for t ≥ 0. 
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7.2 The natural response of an RC circuit 
Example 7.2.1: 
Use KCL to find the expression for the voltage across the capacitor in the following circuit 
assuming it is initially charged to Vo at t = 0, (i.e. vL(0) = V0). 
 

 
It should be noted that voltage across a capacitor cannot change abruptly [v(0-) = v(0+) = Vo] 
although the current can change abruptly.  The current will change abruptly dependent upon 
whether the capacitor is storing or discharging energy.  The voltage is an exponential decaying 
curve after the DC source has been removed.  Recall that under DC conditions a capacitor acts 
like an open circuit.   
 
Using Ohm’s Law, the current through the resistor is given by iR(t) = Vo/R for t≥ 0+ because the 
current through the capacitor relates to the first derivative thus iR (0-) = 0 , iR (0+) = Vo/R. 
 
 

t

iR
Vo/R

(Vo/R)e-t/τ

 
Voltage across the capacitor Current through the resistor 

 
The power dissipated in the resistor is given by p = Vo

2/Re-2[1/(RC)]t (W), t ≥ 0 
The energy delivered to the resistor is given by .5CVo

2(1 – e-2[1/(RC)]t) (J), t ≥ 0 
The initial energy stored in the inductor is given by w = 0.5CVo

2 (J) 
 
To find the natural response of an RC circuit, 
 i. Find the initial voltage Vo across the capacitor  
 ii. Find the time constant of the circuit, τ = ReqC 
 iii Use the expression, v(t) = Vo e-[1/(RC]t  , to find v(t) using Vo and τ 
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Example 7.2.2: 
For the following circuit, determine vC(t), iC(t), vR(t), iR(t) for t ≥  . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 7.2.3: 
For the following circuit determine the voltage across the capacitor for t ≥ 0. 
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Lecture 2-2: The step response and general solution of 1st order circuits 
Reading: 7.3 - 4 

 
7.3 The step response of RL and RC circuits 
As previously mentioned the step response of an RL or RC circuit is the voltage or current that 
results when a DC source is suddenly added. 
 
The general solution for the natural and step response of RL and RC circuits is given by the 
following, τ

t

e)](x)0(x[)(x)t(x −∞−+∞=   
 

Example 7.3.1: 
For the following circuit assume v(0) = Vo and use KVL to derive the step response v(t) for the 
following circuit. 

 
 
 
 
 
 
 
 
 
Example 7.3.2: 
For the following circuit assume i(0) = Io and use KCL to derive the step response i(t) for the 
following circuit. 
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7.4 A general solution for step and natural responses 
Since all of these circuits are described by a first order differential equation, it is possible to 
define a general solution as 
x(t) = xf + [x(to) – xf]e-(t-to)/τ  , 
where xf is the final value of the variable and x(to) is the initial value of the variable 
 
The complete response of a circuit can be decomposed into the natural and the step.  The 
natural response is due to the stored energy and the step is due to the independent source. 
 
x(t) = xnatural(t) + xstep(t) 
xnatural = x(to) e-(t-to)/τ and xstep = xf  – xf e-(t-to)/τ 
 
The natural response eventually dies out and the steady-state component remains.  Therefore, the 
response can also be characterized by the temporary part and the permanent part.  The temporary 
part is the transient response.  The permanent part is the steady state response.   The transient 
response is the circuit’s temporary response that will die out with time.  The steady-state 
response is the behavior of the circuit after a long time after an external excitation is applied. 
 
x(t) = xtransient(t) + xsteadystate(t) 
xtransient = [x(to) – xf]e-(t-to)/τ and xsteadystate = xf  
 
To compute the step and natural response of circuits use the following steps 
 i. identify the variable of interest (i.e. capacitive voltage or inductive current) 
 ii. determine the initial voltage or current for the capacitor or inductor 
 iii. calculate the final value of the variable as t → ∞ 
 iv. calculate the time constant for the circuit 
 v. use the general formula to find the variable of interest 
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Example 7.4.1: 
Determine i(t) for the following circuit. 
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Example 7.4.2: 
Determine v(t) and i(t)  for the following circuit. 
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Lecture 2-3: The natural response of 2nd order circuits 
Reading: 8.1, 8.2, 8.4 

 
Objectives: To define the types of responses: overdamped, underdamped, critically damped 
 ` To define the terms: damping factor, resonant frequency, undamped frequency 
  To define the characteristic equation for parallel and series RLC circuits 
  To calculate the natural response of parallel and series RLC circuits 
 
8.1 The Natural Response of a parallel RLC circuit 

 
Example 8.1.1: 
Use KCL to derive the 2nd order differential equation for the natural response of the above 
parallel RLC circuit.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since this is a second-order differential equation, circuits with resistors, inductors and capacitors 
are referred to as second-order circuits. 
 
Using Laplace analysis and assuming that the solution is of the form Aest, the differential 
equation simplifies to the characteristic equation, s2 + 2αs + ωo

2 = 0 
 
Where the damping factor, α = 1/(2RC) (rad/s) and the resonant frequency, ωo = 1/ LC  (rad/s)  
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The roots of the characteristic equation are the complex frequencies, s1 and s2 (rad/s).   
 
The complex frequencies can be found by using the quadratic formula 

s1 , s2 = 2
o

2
2

LC
1

RC2
1

RC2
1 ωαα −+−=−⎟

⎠
⎞

⎜
⎝
⎛±−  

 
These roots can be real or complex and there can also be one or two distinct roots of the 
characteristic equation.  The nature of the roots of the characteristic equation determines the type 
of natural response for the RLC circuit.  The damping ratio, ζ = α/ωo, can also be used to 
determine the type of natural response for the RLC circuit. 
 
 
8.4 The natural responses of a series RLC circuit 

       
 
Example 8.4.1: 
Use KVL to derive the 2nd order differential equation for the natural response of the above series 
RLC circuit.   
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The following table provides a summary of the results for the analysis of the natural response for 
parallel and series RLC circuits. 

Circuit Parallel Series 
Second order D.E. 

0
LC
v

dt
dv

RC
1

dt
vd
2

2

=++  0
LC
i

dt
di

L
R

dt
id
2

2

=++  

Characteristic 
equation 
s2 + 2αs + ωo

2  

0
LC
1s

RC
1s 2 =++  0

LC
1s

L
Rs2 =++  

Roots, complex 
frequencies 

2
o

2 ωαα −±−  
s1,s2 = 

LC
1

RC2
1

RC2
1 2

−⎟
⎠
⎞

⎜
⎝
⎛±−  s1,s2 = 

LC
1

L2
R

L2
R 2

−⎟
⎠
⎞

⎜
⎝
⎛±−  

Damping factor 
RC2
1

=α  
L2

R
=α  

Resonant radian 
frequency  
(undamped 
frequency) 

LC
1

o =ω  

Initial conditions Using KCL: 
iR(0) + iL(0) + iC(0) 

0
R
VI

dt
)0(dvC o

o =++  

C
I

RC
V

dt
)0(dv oo −−=  

 

using KVL:  
vR(0) + vL(0) + vC(0)   

IoR + L
dt

)0(di +Vo = 0 

L
V

L
RI

dt
di oo −

−
=

)0(  

 
8.2 Types of responses 
 
Overdamped 
α > ωo 

ζ > 1 
 
2 real, distinct roots 

Slow response and long 
settling time 

Critically Damped 
α  =  ωo 

ζ = 1 
 
2 equal real roots 

Fast response and short 
settling time  

Underdamped 
α < ωo 

ζ < 1 
 
2 complex roots that are 
complex conjugates 

 

 

Fastest response and long 
settling time 
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Type of Response Parallel Series 

Overdamped 
α > ωo 
2 distinct real roots 

v(t) = ts
2

ts
1

21 eAeA +  
v(0+) = A1 + A2 
 

=
+

dt
)0(dv s1A1 + s2A2 

i(t) = A1es1t + A2es2t 

i(0) = A1 + A2 

=
dt

)0(di s1A1 + s2A2 

Critically Damped 
α  = ωo 
2 equal real roots 

v(t) = t
2

t
1 eDteD α−α− +   

v(0+) = D2  

=
+

dt
)0(dv  D1 - αD2 

i(t) = D1te-αt + D2e-αt 

i(0) = D2  

=
dt

)0(di  D1 - αD2 

Underdamped 
α < ωo 
2 complex conjugate roots 

v(t) = B1e-αtcosωdt + B2e-αtsinωdt 
damped radian frequency 

22
od α−ω=ω   

v(0+) = B1 

=
+

dt
)0(dv  -αB1 + ωdB2 

i(t) = B1e-αtcosωdt  + B2e-αtsinωdt 
damped radian frequency 

22
od α−ω=ω   

i(0) = B1 

=
dt

)0(di  -αB1 + ωdB2 

 
There is also an undamped response which occurs when α→0.  There is a persistent oscillation 
that approaches the undamped frequency, ωo.  The response for this type of systems would be  
sinusoidal. 
 
Team Concept Question 8.2.1: 
In a source-free parallel RLC circuit, if the resistor is replaced with a wire then the voltage 
across the capacitor is  
 

a) underdamped 
b) overdamped 
c) critically damped 
d) undamped 

 
Team Concept Question 8.2.2: 
In a source-free parallel RLC circuit, if the resistor is removed from the circuit then the voltage 
across the capacitor is  
 

a) underdamped 
b) overdamped 
c) critically damped 
d) undamped 
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Team Concept Question 8.4.1: 
In a source-free series RLC circuit, if the resistor is replaced with a wire then the voltage across 
the capacitor is  
 

a) underdamped 
b) overdamped 
c) critically damped 
d) undamped  

 
Team Concept Question 8.4.2: 
In a source-free series RLC circuit, if the resistor is removed from the circuit then the voltage 
across the capacitor is  
 

a) underdamped 
b) overdamped 
c) critically damped 
d) none of the above 

 
 In-class activity 8.2.2: 
For the following circuit, find v(t) for t > 0. 
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In-class activity 8.2.3: 
Find v(t) for t > 0 in the following circuit. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
In-class activity 8.4.1: 
The circuit in the following figure has reached steady state at t = 0-.  If the make-before-break 
switch move to position b at t = 0, calculate i(t) for t > 0. 
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Lecture 3-1: The step response of 2nd order circuits 
Reading: 8.3 - 4 

 
Objectives: To define the types of responses: overdamped, underdamped, critically damped 
  To calculate the step response of parallel and series RLC circuits 

 
 

8.3 The Step response of a parallel RLC circuit 
 

 
Example 8.3.1: 
To find the step response of the above parallel RLC circuit, use KCL to derive the 2nd order 
differential equation. 
 
 
 
 
 
 
 
 
8.4 The Step response of a series RLC circuit 

 
Example 8.4.1: 
To find the step response of the above series RLC circuit, use KVL to derive the 2nd order 
differential equation.  Observe that it is a similar derivation to the parallel RLC circuit. 
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Circuit Parallel Series 

Second order D.E. 
LC
I

LC
i

dt
di

RC
1

dt
id s
2

2

=++  
LC
V

LC
v

dt
dv

L
R

dt
vd s
2

2

=++  

Characteristic 
equation 
s2 + 2αs + ωo

2  

0
LC
1s

RC
1s2 =++  0

LC
1s

L
Rs2 =++  

Roots, Complex 
frequencies 

2
o

2 ωαα −±−  
s1,s2 = 

LC
1

RC2
1

RC2
1 2

−⎟
⎠
⎞

⎜
⎝
⎛±−  s1,s2 = 

LC
1

L2
R

L2
R 2

−⎟
⎠
⎞

⎜
⎝
⎛±−  

Damping factor 
RC2
1

=α  
L2

R
=α  

Resonant radian 
frequency  
(undamped 
frequency) 

LC
1

o =ω  

Initial conditions using parallel voltages: 
 vL(0+) = vC(0+) 

L
)0(v

dt
di C

0t

+

=

=
+

 

 

using series current:  
iC(0+) = iL(0+)  

C
)0(i

dt
dv L

0t

+

=

=
+

 

 
 
8.3 - 4 Types of responses 
Recall that the type of response of a 2nd order circuit is related to the roots of the characteristic 
equation or ζ.  A comparison of the 3 types of responses is shown here. 
 

 
Step Response      Natural Response 
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Type of Response Parallel Series 

Overdamped 
α > ωo 

ζ > 1 
 
2 real, distinct roots 

i(t) = Is + ts
2

ts
1

21 e'Ae'A +  
i(0) = Is + A1′ + A2′ 

+=0tdt
di

 = s1A1′ + s2A2′ 

v(t) = Vs + A1′es1t + A2′es2t 

v(0) = Vs + A1′ + A2′ 

+=0tdt
dv  = s1A1′ + s2A2′ 

Critically Damped 
α  =  ωo 

ζ = 1 
 
2 equal real roots 

i(t) = Is + D1′te-αt + D2′e-αt

i(0) = Is + D2′ 

+=0tdt
di

 =D1′ - α D2′ 

v(t) = Vs + D1′te-αt + D2′e-αt

v(0) = Vs + D2′ 

+=0tdt
dv  = D1′ - α D2′ 

Underdamped 
α < ωo 

ζ < 1 
 
2 complex roots that 
are complex 
conjugates 

i(t) = Is + B1′e-αtcosωdt  +     
B2′e-αtsinωdt 

damped frequency ωd = 
22

o αω −  
i(0) = Is + B1′ 

+=0tdt
di

 =-αB1′ + ωdB2′ 

v(t) =Vs + B1′e-αtcosωdt  +        
B2′e-αtsinωdt 

damped frequency ωd = 
22

o αω −  
v(0) = Vs + B1′ 

+=0tdt
dv  = -αB1′ + ωdB2′ 

 
Team Concept Question 8.3.1: 
In a parallel RLC circuit with a DC source, if L equals C, determine the range of resistor values 
that will achieve an overdamped response. 
 

a) 0 < R < .5 Ω 
b) R > .5L Ω 
c) R > .5/L Ω 
d) none of the above 

 
Team Concept Question 8.4.1: 
In a series RLC circuit with a DC source, if L equals C then determine the value of R such that 
the voltage across the capacitor is critically damped. 
 
a) R  = .5Ω 
b) R = 2Ω 
c) R  = .5/L 
d) none of the above 
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In-class activity 8.3.1: 
Find the output voltage vo(t) for the following circuit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
In-class activity 8.4.1: 
For the following circuit, find the voltages v(t) and vR(t). 
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In-class activity 8.4.2: 
For the following circuit, find the voltage v(t). 
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Lecture 3-2: Circuit elements and analysis in the s domain 
Reading: 13.1 – 13.2 

 
Objectives: To define circuit elements in the s domain 
  To redraw 1st and 2nd order circuits in the s domain using initial conditions 
  To calculate the natural response of circuits in the s-domain 

 
13.1 – 13.2 Circuit Elements and Analysis in the s Domain 
The benefit of Laplace transforms is that it transforms differential equations to algebraic 
equations that may be easier to solve. 
 
The following table summarizes the relationship between resistors, inductors, capacitors at the 
frequency domain. 
 
Note that V = L{v}, I = L{i} and impedance relationships can be related to the phasor 
relationships where s = jω for sinusoidal steady state where the transient has died off or α=0. 
 

Time 
Domain 

Voltage 
Current 

Relationships 

Laplace 
Transform 

Complex Frequency Domain 
(s-domain) 

Resistor 

 

v = iR 
i = v/R 

V = IR 
I = V/R 
Z = R 

 
Inductor 

 

dt
diLv =  

o

t

0
Ivdx

L
1i += ∫  

V = sLI - LIo 

I = 
s

I
sL
V O+  

Z = sL 

Capacitor 

 

dt
dvCi =  

o0
Vid

C
1v += ∫

τ
τ  

I = sCV - CVo 

V = 
s

V
sC
I O+  

Z = 
sC
1  

 

 
Note that the two frequency domain circuits for the inductor and capacitor initial conditions 
represent the Thevenin and Norton equivalent circuits with respect to the terminals for those 
circuits. 
 
Ohm’s law in the frequency domain is stated as V = IZ.   
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Element Impedance (Ω) Admittance (S) 

R R 1/R 
L sL 1/(sL) 
C 1/(sC) sC 
 
All of the circuit analysis techniques in the frequency domain are applicable to circuits in the s-
domain including KVL, KCL, nodal analysis, mesh analysis, source transformations, and 
Thevenin-Norton equivalents. 
 
Example 13.2.1: 
For the following network,  
a) find the impedance and admittance across terminals a and b as a rational function of s 
b) compute the numerical values of the zeros and poles of the impedance 
c) plot the zeros and poles of the impedance on a s-plane 

 
 
 
 
 
 
Example 13.2.2: 
For the following network, find the input impedance across terminals a and b as a rational 
function of s. 
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Example 13.2.3: 
For the following network, redraw the circuit in the s-domain. 

 
 
 
 
 
 
 
 
 
 
Example 13.2.4: 
For the following network, redraw the circuit in the s-domain. 
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EXAMPLE 13.2.5 (natural response): 
For the following circuit, redraw the circuit in the s-domain at t = 0+.  If the circuit has reached 
steady state at t = 0- and the switch opens at t = 0, determine i(t). 
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Lecture 3-3: Circuit analysis in the s domain 
Reading: 13.2 

 
Objectives: To analyze the natural response of circuits in the s-domain 

To analyze the step response of circuits in the s-domain 
 
13.2 Circuit Analysis in the s-domain 
In-class activity 13.2.1(step response): 
For the following network find i(t)  for t > 0. 
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In-class activity 13.2.2 (step response): 
Having been in position a for a long time, the switch in the following circuit moves to position b 
at t = 0.  Find v(t) for  > 0. 
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In-class activity 13.2.3 (natural response): 
Find v(t) for t > 0 in the following circuit. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 



 
 

ECE 200 CIRCUITS & SYSTEMS  Spring 2008/09 
 

C.A. Berry Lec3-3.doc Page 4 of 4 
  

In-class activity 13.2.4 (natural response): 
The circuit in the following figure has reached steady state at t = 0-.  If the make-before-break 
switch moves to position b at t = 0, calculate i(t) for t > 0. 
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Lecture 4-1: Applications in the s domain 
Reading: 13.3 

 
Objective: To calculate the steady-state and transient response of circuits in the s-domain 
  To analyze circuits in the s-domain using Thevenin’s theorem  
  To analyze circuits in the s-domain using superposition 
  To analyze mutual inductance circuits in the s-domain  
 
In-class activity 13.3.1 (Steady State and Transient Response): 
For the following circuit determine the steady state and transient response for vo(t) using 
Laplace transforms if the vs(t) = 2 cos t V 
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In-class activity 13.3.2 (Steady State and Transient Response): 
Assuming zero initial conditions, determine vo(t) in the following circuit. 
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Lecture 4-2: Applications in the s domain 
Reading: 13.3 

 
Objective: To calculate the steady-state and transient response of circuits in the s-domain 
  To analyze circuits in the s-domain using Thevenin’s theorem  
  To analyze circuits in the s-domain using superposition 
  To analyze mutual inductance circuits in the s-domain  
 
In-class activity 13.3.3 (Thevenin and Norton equivalent): 
Find the s-domain Thevenin and Norton equivalent circuit with respect to terminals a and b for 
the following circuit. 
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In-class activity 13.3.4 (Mutual Inductance): 
Use mesh analysis to find vo(t) for t>0 for the following circuit. 
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In-class activity 13.3.5 (superposition): 
Use superposition to find the current through the inductor for all time t > 0 in the following 
circuit. 
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• Transfer Functions 
• Passive Filters 
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• Bode diagrams 
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Lecture 5-1: The Initial and Final Value Theorem, Transfer functions,  
Steady-State response 

Reading: 13.4, 13.7 
 

Objectives: To be able to define and clearly explain the transfer function of a circuit 
 To calculate the transfer function of a circuit 
 To apply the initial value and final value theorem to find voltage and current 

values in an electric circuit an electric circuit 
To use the transfer function instead of phasor analysis to determine the steady-
state response of a circuit. 

   
13.4 The Initial Value Theorem and Transfer function 
The initial and final value theorems can be used to find the initial and final values of a voltage 
or current in the time-domain by using the s-domain equivalent of the current or voltage. 
The initial value theorem states that )s(sFlim)t(flim

s0t ∞→→
=

+
 

The final value theorem states that )s(sFlim)t(flim
0st →∞→

=  

 
The transfer function is defined as the s-domain ratio of the Laplace transform of the output 
(response) to the Laplace transform of the input (source).  To find the transfer function of a 
circuit, all of the initial conditions must be zero. 
 

The transfer function is H(s) = 
)s(X
)s(Y

input
output

=  

 

 
H(s) is always a rational function of s.  If there are any complex poles, they always appear in 
conjugate pairs.  The poles of H(s) must lie in the left half of the s plane if the response is to be 
bounded.  The zeros may lie in either the right half or the left half of the s plane.  the poles are 
represented with “X’s” and the zeros are represented with “O’s”. 
 

 

s-plane 
σ± jω 

STABLE

X
O

X UNSTABLE

MARGINALLY STABLE

real axis, σ 

 
H(s) 

output 
Y(s)

input 
X(s) 

imaginary axis, jω
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In-class activity 13.4.1 (Initial, Final Value Theorem): 
For the following circuit, (a) Find V(s), (b) Use the initial value theorem to find v(0), (c) Use the 
final value theorem to find v(∞). [hint: v(t) = 12 - 4.3e-13.4t + 0.3e-187t V ] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In-class activity 13.4.2 (Transfer functions): 
For each of the following transfer functions, find K (gain), α (damping factor/coefficient), ωo 

(undamped frequency), ωd (damped frequency), ζ (damping ratio), poles, zeros, type of response.  
Is it stable? 
 

H(s) =
)1s2s(s

5
2 ++

  

 
 
 

H(s) = 
6s5s

12s3
2 ++

+  

 
 
 

H(s) = 
18s10s2

s24s8
2

2

++
+  
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In-class activity 13.4.3 (Transfer function): 
Assume the following circuit has zero initial conditions, determine the transfer function  
H(s) = I1(s)/V(s).   
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13.7 Transfer function and Steady-State Sinusoidal Response 
 
For a steady state sinusoidal response, x(t) = Acos (ωt + φ) 
 
Using trigonometric properties, x(t) = A cos ωt cos φ - A sin ωt sin φ 
 
The Laplace transform of the input, x(t) is  X(s) = A φ

ω

Aω φ

ω

A  φ  ω φ

ω
 

 
The output is Y(s) = H(s) X(s) =  φ  ω φ

ω
 

 
Using partial fraction expansion, Y(s) = terms from poles of H(s) + 

ω ω
 

 
Only the X(s) terms contribute to the steady-state response. 
The terms due to the transfer function H(s) are transient and approach 0 as t approaches ∞.   
The terms from the poles of H(s) are in the open left-half of the s-plane (they have to be for 
stability)!!   
The poles of the sinusoidal input, x(t) are on the imaginary axis of the s-plane.  
 

 φ  ω φ
ω ω

 = ω φ= | ω | θ ω φ  

 
The steady-state solution for y(t) or the steady-state sinusoidal response is  
 
Yss(s) = (H(jω))(A∠φ) = A|H(jω)|ej(φ + θ(ω)) 

 
yss(t) = A|H(jω)|cos[ωt + φ + θ(ω)] 
 
The amplitude of the solution is equal to the amplitude of the source, A, times the magnitude of 
the transfer function, |H(jω)|. 
 
The phase angle of the response is equal to the phase angle of the source, φ, plus the phase angle 
of the transfer function, θ(ω) at the frequency of the source, ω.   
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In-class activity 13.4.4 (Steady-state sinusoidal response): 
For the following circuit vs(t) = 2 cos t V,    

a) Use the transfer function to compute the steady-state expression for vo(t). 
b) Use Laplace transforms to find the complete solution vo(t) = voss(t) + votran(t) 
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Lecture 5-2: Introduction to Filters 
Reading: 13.4, 14.1-3 

 
Objectives: To introduce the 4 major types of passive filters 

To illustrate the frequency response, magnitude and phase angle plots 
To define the terms passband, stopband, cutoff and half-power frequency 

 
The frequency response of a circuit is the analysis of the result of varying the source frequency 
on voltages and currents in the circuit. 
 
Frequency-selective circuits are circuits that pass only certain signals in a desired-range of 
frequencies to the output of the system. (i.e. radios, telephone systems, car stereos, televisions) 
 
Frequency-selective circuits are also called filters.  Filters weaken or attenuate any input signals 
outside of particular frequency band. 
 
The action of a filter on an input signal results in an output signal.  

 
 
The signals passed from the input to the output fall within a band of frequencies called the 
passband.  Frequencies not in the circuit’s passband are in the stopband. 
 
The cutoff frequency separates the passband from the stopband 
 
The frequency response plot shows how a transfer function (amplitude and phase) changes as 
the source frequency changes. 
 
The graph of |H(jω)| versus frequency ω is the magnitude plot 
 
The graph of θ(jω) versus frequency ω is the phase angle plot 
 
All of the filters in this lecture will be passive filters that depend only on the passive elements: 
resistors, capacitors, and inductors.  All passive filters have a gain between 0 and 1. 
 
A low pass filter passes low frequencies and stops high frequencies (i.e. woofer) 
 
A high pass filter passes high frequencies and stops low frequencies (i.e. tweeter) 
 
A band pass filter passes frequencies within a frequency band and blocks or attenuates 
frequencies outside the band (i.e. radio) 
 
A band reject filter passes frequencies outside a frequency band and blocks or attenuates 
frequencies within the band. (i.e. unwanted noise) 

FILTERinput signal output signal 
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The cutoff frequency is typically defined by engineers as the frequency for which the transfer 
function magnitude is decreased by 30% or the factor 1/ 2  or -3 dB. (i.e. |H(jωc)|= 0.707 Hmax) 
 
At the cutoff frequency, the average power delivered by the circuit is one half of the maximum 
average power.  Thus ωc is also called the half-power frequency. [P(jωc) = 0.5Pmax] 
 

 
 

Type of 
Filter 

Low - pass High - pass Bandpass Bandreject 

H(0) 1 0 0 1 
H(∞) 0 1 0 1 
H(ωc) or 
H(ωo) 

1/ 2  1/ 2  1 0 

Frequency 
response 
 
Ideal 
magnitude 
plot 

 

  

Example 
Circuit 
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In-class activity 14.1.1 (Passive Filters): 
For the following circuit, use qualitative analysis, to determine the type of filter.  What is the 
cutoff frequency?  What is the gain? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In-class activity 14.1.2  (Passive Filters): 
For the following circuit, use qualitative analysis, to determine the type of filter.  What is the 
cutoff frequency?  What is the gain? 
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In-class activity 14.1.3  (Passive Filters): 
For the following circuit, use qualitative analysis, to determine the type of filter.  What is the 
resonant frequency? What is the bandwidth? What is the gain? 

 
 
 
 
 
 
 
 
 
 
 
 
 
In-class activity 14.1.4  (Passive Filters): 
For the following circuit, use qualitative analysis, to determine the type of filter.   
What is the gain? 
What is the resonant frequency?  
What is the bandwidth?  
What are the cut off frequencies? 

 
 
 



 
 

ECE 200 CIRCUITS & SYSTEMS  Winter 2008/09 
 

C.A. Berry Lec5-3.docx Page 1 of 4 

Lecture 5-3: Active Filters 
Reading: 15.1 - 3 

 
Objectives: To analyze active filter circuits to determine the frequency response, gain, cut off 

frequencies, resonant frequency and bandwidth 
 To calculate the transfer function of passive and active filters 
 To design a passive or active filter given certain specifications 
  
 
15.1 Active Filter Circuits 
All the filters described so far have been passive, they only include resistors, inductors, and 
capacitors.  The advantage of active filters over passive is that creating a filter with an 
operational amplifier may be less expensive because they do not require inductors and they can 
also have a maximum magnitude that can exceed one.  Additionally, the addition of a resistive 
load will not alter the passband magnitude or the cutoff frequency of an active filter.  
 

Low Pass Filter High Pass Filter 

  

H(s) = -K
c

c

s ω
ω
+

 H(s) = -K  
cs

s
ω+

 

K = R2/R1 K = R2/R1 
ωc = 1/(R2C) ωc = 1/(R1C) 
integrating amplifier in the time domain differentiating amplifier in the time domain 
 
Bode plots or frequency response plots are used to graphically describe the behavior of passive 
and active filters.  The Bode plot is used to graph the magnitude of the transfer function in 
decibels (dB) versus the log of the frequency.  The cutoff frequency is the frequency at which the 
maximum magnitude of the transfer function has decreased by 1/ 2  or 3dB. The dB magnitude 
is defined as 20 log |H(jω)|. 
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In-class activity 15.1.1 
For the following circuit,  
a) derive the transfer function 
b) what is the step response? 
c) what type of filter is it? 
d) what is the cut off frequency? 
e) what is the DC gain? 
f) what is the AC gain at 2 kHz? 
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In-class activity 15.1.2 (active highpass filter): 
Design a filter with the following Bode magnitude response.  Use 0.5 μF capacitors in your 
design. 
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In-class activity 15.1.3 
For the following circuit,  
a) derive the transfer function 
b) what is the step response? 
c) what type of filter is it? 
d) what is the cut off frequency? 
e) what is the AC gain at 2 kHz? 
f) Redesign the circuit to have a gain of 10 and the same cut off frequency 
g) Redesign the original circuit to have a cut of frequency of 5 kHz and the same gain. 
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Lecture 6-1: More Passive and Active Filters 
Reading: 14.1 – 5, 15.1 - 3 

 
Objectives: To analyze passive and active filter circuits to determine the frequency response, 

gain, cut off frequencies, resonant frequency and bandwidth 
 To calculate the transfer function of passive and active filters 
 To design a passive or active filter given certain specifications 
  
In-Class Activity Signal to Noise Ratio Example: 
In a power plant, a 1 mV communication signal has a resonant frequency of 12.5 kHz.  However, 
the signal is corrupted by 1.5 mV power line noise 60 Hz and 0.25 mV machine vibration noise 
at 50 kHz. 
a) what is the signal to noise ratio for the low and high frequency noise? 
b) design a bandpass filter to “clean up” the noisy signal 
c) after passing the signal through the filter, what is the signal to noise ratio for the low and 

high frequency noise? 
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In-Class Activity 6.1.1: 

Given the following transfer function, H(jω) = 
ωj2200

160
+

  

a) What type of filter is it? 
b) What is the cutoff frequency? 
c) What is the DC gain? 
d) What is the magnitude of H(jω) at ω =10? 100? 1000 rad/s? 
e) What is the phase of H(jω) at ω =10? 100? 1000 rad/s? 
f) Using 0.01 µF capacitors, design a filter to satisfy this transfer function. 
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In-Class Activity 6.1.3: 
For the following circuit, 

a) Using qualitative analysis, what is the low frequency gain? 
b) Using qualitative analysis, what is the high frequency gain? 
c) What type of filter is it? 
d) Find the transfer function Vo/Vs 
e)  What is the cutoff frequency?   
f) What is the magnitude and phase of H(jω) at ω =20 rad/s? 

ans: ωc = 251.57 rad/s 
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In-Class Activity 6.1.4: 
For the following circuit,  
a) determine the transfer function,  
b) what type of filter is it? 
c) what is the center frequency? 
d) what is the bandwidth? 
e) what is the gain at resonance?. 
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Lecture 6-2: Bode Diagrams 
Reading: Appendix E.1 - 2 

 
Objectives: To create Bode diagrams for electric circuits and given transfer functions 
 To apply the steps to create Bode diagrams for first-order poles and zeros and 

poles and zeros at the origin 
 To be able to compute the transfer function of a circuit given the Bode diagram 

 
The bel used to define power gain and is defined as log10(pout/pin). 
 
The decibel is also used to measure power gain and is defined as 10 log10(pout/pin). 
 
Decibels can be used to define the voltage and current ratio as 
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Bode diagrams are graphical techniques that describe the frequency response of a circuit.  There 
are two separate plots: amplitude and phase angle and they vary with the frequency. 
 
The plots are on semi log graph paper with the frequency on the horizontal log scale and the 
amplitude and phase angle on the linear vertical scale. 
 
There are several types of factors in a transfer function these include: 
i. a gain K 
ii. a zero (jω) at the origin 
iii. a pole (jω)-1 at the origin 
iv. a simple zero 1 + jω/z1 
v. a simple pole 1/(1+jω/p1) 
vi. a quadratic pole 1/[1 + j2ζ2ω/ωn + (jω/ωn)2] 
vii. a quadratic zero [1 + j2ζ1ω/ωk + (jω/ωk)2] 
 
This lecture will address creating a Bode diagram with the first 5 types of factors.  To create the 
Bode diagram, plot each of these factors separately and then combine them graphically.   
 
Standard Form 

Given the following transfer function 
)ps(s
)zs(K

)s(H
1

1

+
+

=  and 
)pj(j

)zj(K
)j(H

1

1

+
+

=
ωω
ω

ω  

 
The first step in creating a Bode diagram is to write H(jω) in standard form.  In order to write 
H(jω) in standard form, divide out the poles and zeros. 
 

C.A. Berry Lec6-2.doc Page 1 of 7 



 
 

ECE 200 CIRCUITS & SYSTEMS  Winter 2008/09 

STANDARD FORM:  H(jω) = 
⎟
⎠
⎞⎜

⎝
⎛ +

⎟
⎠
⎞⎜

⎝
⎛ +

1
1

1
1

p
j1)j(p

z
j1Kz

ωω

ω

,  

the amplitude is  |H(jω)| = 

1

1
o

p
j1

z
j1K

ωω

ω

+

+
, where Ko = Kz1/p1  

The amplitude of H(jω) in decibels is AdB = 20log10| H(jω)| 
 

AdB =20log10 

1

1
o

p
j1

z
j1K

ωω

ω

+

+
 = 20log10Ko + 20log10|1+ jω/z1| - 20log10ω - 20log10|1+ jω/p1| 

 
the phase is θ(ω) = ψ1 - 90° - β1, where ψ1  = tan-1(ω/z1), β1 = tan-1(ω/p1) 
 
To create the Bode diagram, plot each term of the amplitude separately and then graphically 
combine the plots. 
 
i. Constant Ko
The plot of the constant, Ko, is a horizontal straight line at the value 20log10Ko 
 

H(ω) HdB φ 
Ko 20 log10 |Ko| 0° 
-Ko 20 log10 |Ko| ±180° 

 
ii. Zero at the origin 
Another possible term in the numerator is a zero at the origin. 
The term 20log10|jω| is a zero at the origin.  The plot of this term is a straight line with a slope of 
20 dB/decade that crosses the 0dB axis at ω = 1 rad/s.  The plot of the phase is a horizontal line 
at 90°. 

H(ω) HdB φ 
jω 20 log10 ω 90° 
(jω)N 20N log10 ω 90N° 

 
for example, amplitude plot of a single and double zero at the origin 
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ω, rad/s 20 log10 ω 40 log10 ω 
0.01 -40 dB -80 
0.1 -20 dB -40 
1.0 0 dB 0 
10.0 20 dB 40 
100.0 40 dB 80 -60
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iii. Pole at the origin 
The term 20log10|jω| is a pole at the origin.  The plot of this term is a straight line with a slope of 
-20 dB/decade that crosses the 0dB axis at ω = 1 rad/s.  The plot of the phase is a horizontal line 
at -90°. 
 

H(ω) HdB φ 
(jω)-1 -20 log10 ω -90° 
(jω)-N -20N log10 ω -90N°  

 
for example, amplitude plot of a single and double pole at the origin 
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iv. First Order Zero 
The amplitude term 20log10|1+ jω/z1| is a first-order zero.  The plot of this term is a horizontal 
line approximation from ω = 0 to z1 at 0°.   At the corner frequency (ω = z1), the plot increases 
with a slope of 20dB/decade.  The phase term, tan-1(ω/z1), is a horizontal line approximation 
from ω = 0 to 0.1z1 at 0°.  At 0.1z1, the line increases with a slope of 45°/decade from 0.1z1 to 
10z1.  At 10z1, the line is a horizontal approximation at 90°. 
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for example, amplitude and phase plot of a single and double first order zero (1 + jω/10) 
 
ω, rad/s 20 log10 |1 + jω/10| 20 log10 |1 + jω/10| 

approximate, dB 
20 log10 |1 + jω/10| 20 log10 |1 + jω/10| 

approximate, dB 
0.1 0.0004 0 0.0009 0 
1.0 0.0432 0 0.0864 0 
10.0 3 dB 0 6 dB 0 
100.0 20 dB 20 40 dB 40 
1000.0 40 dB 40 80 dB 80 
 

C.A. Berry Lec6-2.doc Page 3 of 7 



 
 

ECE 200 CIRCUITS & SYSTEMS  Winter 2008/09 
 
ω, rad/s tan-1(ω/10), ° tan-1(ω/10),° 

approximate 
2⋅tan-1(ω/10), ° 2⋅tan-1(ω/10),° 

approximate 
0.1 0.573 0 1.146 0 
1.0 5.711 0 11.421 0 
10.0 45 45 90 90 
100.0 84.289 90 168.579 180 
1000.0 89.427 90 178.854 180 
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v. First Order Pole 
The amplitude term 20log10|1+ jω/p1| is a first-order pole.  The plot of this amplitude term is a 
horizontal line approximation from ω = 0 to p1 at 0 dB.   At the corner frequency (ω = p1), the 
plot decreases with a slope of -20dB/decade.  The phase term, -tan-1(ω/z1),  is a horizontal line 
approximation from ω = 0 to 0.1z1 at 0°.  At 0.1z1, the line decreases with a slope of -45°/decade 
from 0.1z1 to 10z1.  At 10z1, the line is a horizontal approximation at -90°. 
 

H(ω) HdB φ 
(1+jω/p1)-1

-20 log10 
2

1

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

p
ω  -tan-1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1p
ω  

(1+jω/p1)-N

-20N log10 
2

1

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

p
ω  -N⋅tan-1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1p
ω  

 
for example, amplitude and phase plot of a single and double first order pole (1 + jω/10)-1

 
ω, rad/s -20 log10 |1 + jω/10| -20 log10 |1 + jω/10|

approximate, dB 
-20 log10 |1 + jω/10| -20 log10 |1 + jω/10|

approximate, dB 
0.1 -0.0004 0 -0.0009 0 
1.0 -0.0432 0 -0.0864 0 
10.0 -3 dB 0 -6 dB 0 
100.0 -20 dB -20 -40 dB -40 
1000.0 -40 dB -40 -80 dB -80 
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ω, rad/s -tan-1(ω/10), ° -tan-1(ω/10),° 

approximate 
-2⋅tan-1(ω/10), ° -2⋅tan-1(ω/10),° 

approximate 
0.1 -0.573 0 -1.146 0 
1.0 -5.711 0 -11.421 0 
10.0 -45 -45 -90 -90 
100.0 -84.289 -90 -168.579 -180 
1000.0 -89.427 -90 -178.854 -180 

 
Example E.1.1: 

Construct the Bode amplitude and phase plot for the transfer function,
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Lecture 6-3: Bode Diagrams 
Reading: Appendix E.1 - 2 

 
Objectives: To create Bode diagrams for electric circuits and given transfer functions 
 To apply the steps to create Bode diagrams for first-order poles and zeros and 

poles and zeros at the origin 
 To be able to compute the transfer function of a circuit given the Bode diagram 

 
ExampleE.1. 2: 
For the following circuit, 
a) Compute the transfer function, H(s) 
b) Construct the Bode amplitude plot for H(s) 
c) Construct the Bode phase plot for H(s) 
d) Suppose that vi(t) = 5cos(500t + 15°) V, use the Bode plot you constructed to predict the 

amplitude of vo(t) in the steady state. 
e) Suppose that vi(t) = 5cos(500t + 15°) V, use the Bode plot you constructed to predict the 

phase of vo(t) in the steady state. 
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Example E.1.3: 
For the following transfer function, 

)10j)(2j(
j200)j(H

++
=

ωω
ωω  

a) Construct the Bode amplitude plot for H(s) 
b) Construct the Bode phase plot for H(s) 
c) Suppose that vi(t) = 5cos(5t) V, use the Bode amplitude  plot you constructed to 

predict the amplitude of vo(t) in the steady state. 
d) Suppose that vi(t) = 5cos(5t + 15°) V, use the Bode phase plot you constructed to 

predict the phase of vo(t) in the steady state. 
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Lecture 7-1: Bode Diagrams 
Reading: Appendix E.1 - 2 

 
Objectives: To create Bode diagrams for electric circuits and given transfer functions 
 To apply the steps to create Bode diagrams for first-order poles and zeros and 

poles and zeros at the origin 
 To be able to compute the transfer function of a circuit given the Bode diagram 

 
Example E.1.4: 
For the following Bode amplitude plot, compute the transfer function, H(s) in the form  
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Example E.1.5: 
For the following Bode amplitude plot, compute the transfer function, H(s) in the form  
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Lecture 7-2: Bode Diagrams 
Reading: Appendix E.1 - 2 

 
Objectives: To create Bode diagrams for electric circuits and given transfer functions 
 To apply the steps to create Bode diagrams for first-order poles and zeros and 

poles and zeros at the origin 
 To be able to compute the transfer function of a circuit given the Bode diagram 

 
Example E.1.6: 
For the following Bode amplitude plot, compute the transfer function, H(s) in the form  

…
…  
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Example E.1.7: 
For the following Bode amplitude plot, compute the transfer function, H(s) in the form  

…
…  
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Lecture 7-3: Scaling 
Reading: 15.2 

 
Objectives: To analyze passive and active filter circuits to determine the frequency response, 

gain, cut off frequencies, resonant frequency and bandwidth 
 To calculate the transfer function of passive and active filters 
 To design a passive or active filter given certain specifications 
 To use scaling to design both passive and active filters 
 
15.2 Scaling 
It is more convenient and simplifies the mathematics to design passive and active filter circuits 
with element values such as 1Ω, 1F, and 1H.  Scaling can be used to transform the circuit and 
values for R, L, and C to more realistic values. 
There are two types of scaling: magnitude and frequency 
 
• In magnitude scaling, the scale factor, km, multiplies all of the impedances at a given 

frequency, the transfer function before and after scaling is the same. 
• In frequency scaling, the scale factor, kf, multiplies each impedance such that it is the same 

as it was at the original frequency. 
 
Where km = R′/R and kf = ω′/ω 
 
elements magnitude, km scale factor frequency, kf scale factor 
R R′ = kmR R′ = R 
L L′ = kmL L′ = L/kf 
C C′ = C/km C′ = C/kf 
 
To simultaneously scale magnitude and frequency use the following.  Note that the primed terms 
are the scaled values and the unprimed terms are the original values. 
 
R′ = _kmR 
 
L′ = _kmL/kf 
  
C′ = _C/(kmkf)  
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In-class activity  15.2.1 (Scaling, active lowpass filters): 
Design a lowpass active filter with a dc gain of 4 and a corner frequency of 500 Hz.  Use a 0.2 
μF capacitor in your design. 
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In-class activity  15.2.2 (Scaling, active highpass filters): 

Design a highpass active filter with a high-frequency gain of 5 and a corner frequency of 2 kHz.  
Use a 0.1 μF capacitor in your design. 
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In-class activity  15.2.3: 

The following series RLC circuit has a center frequency of 1 rad/s, a bandwidth of 1 rad/s and a 
quality factor of 1. Use scaling to compute new values of R and L that yield a circuit with the 
same quality factor but with a center frequency of 10 kHz.  Use a 0.01 μF capacitor in your 
design. 
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• Higher order op amp filters  
• Narrowband filters 
• Two-port circuits 
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Lecture 8-1: Op Amp Bandpass and Bandreject Filters 
Reading: 15.3 

 
Objectives: To analyze op amp broadband bandpass and bandreject filters 

To design op amp broadband bandpass and bandreject filters 
  
 
15.3 Op Amp broadband bandpass and bandreject filters 
 
The bandpass filter passes source voltages between the two cutoff frequencies (the passband) to 
the output and attenuates source voltages before they reach the output at frequencies outside the 
two cutoff frequencies (the stopband). 
 
The center frequency or resonant frequency ,ωo, is the frequency for which a circuit’s transfer 
function is purely real.  This was referred to as the natural response when analyzing second-order 
circuits.  The center frequency is the geometric center of the passband ωo = 2c1c ωω  

For bandpass filters, the magnitude of the transfer function is maximum at the resonant 
frequency Hmax = |H(jωo)| 
 
The bandwidth, β is the width of the passband for a band pass filter. (β = ωc2 - ωc1) 
The quality factor, Q is the ratio of the center frequency to the bandwidth.  This gives a measure 
of the width of the passband, independent of its location on the frequency axis. (Q = ωo/β) 
 
It is possible to create a broadband bandpass filter (ωc2 ≥ 2ωc1) by cascading a low-pass filter, 
high-pass filter, and inverting amplifier.  The quality factor, Q, of a filter describes the width of 
the passband.  For broadband band pass filter, Q < 0.5. 
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H(s) = [HLPF(s))( HHPF(s))( HINV(s)] 

 

H(s) = ( ) 2c1c2c1c
2

2c

ss
sK

ωωωω
ω

+++
−

 
 
 
 
 

A passive high-pass filter cascaded with an active high pass filter 
 
K = R2/R1  
ωc1 = 1/(R1C1) (cutoff of HPF)  
ωc2 = 1/(R2C2) (cutoff of LPF)   

Low pass filter with 
unity gain and ωc2 

 
H(s) = ωc2 /(s + ωc2) 

High pass filter with 
unity gain and ωc1 

 
HHPF(s) = s/(s + ωc1) 

vi 

Inverting amplifier 
with a gain of K 

 
HINV(s) = -Rf/Ri = -K vo 

Alternate (Simplified) form of a Bandpass Filter 
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In-class activity 15.3.1 (active bandpass filters): 
Design a bandpass filter for a graphic equalizer to provide an amplification of 2 within the band 
of frequencies between 100 and 10,000 Hz.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In-class activity 15.3.2 (active bandpass filters): 
Design a bandpass filter to pass frequencies between 250 Hz and 3 kHz and with K = 10.   
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Bandreject Filters 
• The bandreject filter passes source voltages outside a band between two cutoff frequencies 

(the passband) and attenuates source voltages before they reach the output at frequencies 
between the two cutoff frequencies (the stopband). 

• The bandpass and bandreject filters perform complementary function in the frequency 
domain. 

• Ideal bandpass and bandreject filters have two cutoff frequencies, ωc1 and ωc2. 
• At this frequency, the magnitude of the transfer function equals (1/ 2 ) Hmax 

It is possible to create a broadband bandreject filter (ωc2 ≥ 2ωc1) by putting a low-pass and high-
pass filter in parallel and putting them in series with an inverting amplifier. 
 

 

 
 

 

H(s) = ( )( )2c1c

2c1c1c
2

ss
s2sK

ωω
ωωω

++
++

 
 

  

Low pass filter with 
unity gain and ωc1 

High pass filter with 
unity gain and ωc2 

vi 
Inverting amplifier 

with a gain of K 
 

K = Rf/Ri 

vo 
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(RH >>>Ri) 

H(s) = ( )( )2c1c

2c1c1c
2

ss
s2sK

ωω
ωωω

++
++  

In-class activity  15.2.1 (Scaling, active bandreject filters): 
Design a circuit based on the parallel bandreject op amp filter.  The bode magnitude response of 
this filter is shown in the following figure.  Use 0.01 μF capacitors in your design. 
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Alternate (Simplified) form of a Bandreject Filter 
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In-class activity  15.2.2 (Scaling, active bandreject filters): 
Design a bandreject filter for ωo = 20 krad/s, K = 5, and Q =0. 1.  Use 100 pF capacitors in 
your design. (Hint:  Use  β = ωc1 +ωc2, Q = ωo/β, ωo

2 = ωc1ωc2) 
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Lecture 8-2: Higher order op amp filters 
Reading: 15.4 

 
Objectives: To define, design and perform calculations with higher order op amp filters 
  To determine the order of higher order filters using a template 
 
15.4 Higher Order Op Amp Filters 
A prototype low-pass operational amplifier filter has R = 1Ω, C = 1F and a cutoff frequency of 1 
rad/s.  In order to create a sharper transition from the pass band to the stop band, it is necessary 
to cascade filters.  As more filters are cascaded, the slope of the transition increases by 20 
dB/decade.  The following figure shows that as each additional stage increases the order of the 
transfer function for the filter.  The higher order cascaded prototype low pass filter has the 
following transfer function. 

 H(s) = ( )
n

n

)1s(
1
+
− , ωcn = 12n −  

 
Each stage has a cutoff frequency of 1 rad/s and as more stages are added to a filter, the overall 
filter cutoff frequency changes.  The resultant filter can be frequency scaled in order to adjust it 
to the desired cutoff frequency. 

 
kf =ωc/ωcn 

 
Since the gain of the higher-order filter is one, an inverting amplifier can be cascaded with the 
filter to adjust the gain or adjust the gain of each filter or one of the stage filters.  An alternate 
method to achieve the gain is to change the input resistance, Ri on one of the stages to meet the 
gain specification.   
 
 
The higher order cascaded prototype high pass filter has the following transfer function. 

 H(s) = ( )
n

n

)1s(
s
+
− , ωcn = 

√
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Bode Diagram
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In-Class Activity 15.4.1: 
Design a fourth-order low-pass filter with a cutoff frequency of 500 Hz and a passband gain of 
10.  Use 0.01 μF capacitors.  Sketch the Bode magnitude plot for this filter. 
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In-Class Activity 15.4.2: 
Using the template at the end of this lecture,  design a low pass filter with a cut off frequency of 
10 krad/s and a gain of no more than -60 dB at 100 krad/s. Use 0.01 μF capacitors in your 
design.   
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In-Class Activity 15.4.3: 
Using the template at the end of this lecture,  design a high pass filter with a cut off frequency of 
3 krad/s and a gain of no more than -15 dB at 1 krad/s. Use 0.1 μF capacitors in your design.   
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Lecture 9-1: Butterworth filters 
Reading: 15.4 

 
Objectives: To introduce Butterworth filters (low-pass, high-pass, bandpass, bandreject) 

To define, design and perform calculations with Butterworth filters 
To determine the order of Butterworth order filters using a template or formula 

   
An alternate method for designing higher order filters involves the use of Butterworth filters. 
The advantage of Butterworth filters is that there is a sharper transition between the passband 
and stopband.  A unity-gain Butterworth low-pass filter has a transfer function whose 
magnitude is given by, 
 

|H(jω)|dB = 20log10
( ) n2

c1
1
ωω+

 = -10log10(1 + (ω/ωc)2n) 

Table 15.1 lists the Butterworth polynomials up to n = 8 which are used to design Butterworth 
filters scaled to ωc = 1 rad/s. 
 
Note that most of the Butterworth filters are a product of first and second-order filters.  The first 
order transfer function can be produced using a low-pass op amp filter.  The following circuit 
provides the second-order transfer function for the low-pass Butterworth filter cascade. 

 
 

 
 
 
 

 Prototype filter 
General formulas, ωc = 1 rad/s ωc = 1 rad/s, R = 1Ω 

b1 = 2/(RC1) b1 = 2/C1 
R2C1C2 = 1 C1C2 = 1 

H(s) =
1sbs

1

1
2 ++

 = ( )
( ) ( )21

2
1

2
21

2

CCR1sRC2s
CCR1

++
 H(s) =

1sbs
1

1
2 ++

 = ( )
( ) ( )211

2
21

CC1sC2s
CC1
++
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A second-order Butterworth high-pass filter circuit is shown in the following figure.   

 
 

 Prototype filter 
General formulas, ωc = 1 rad/s ωc = 1 rad/s, C = 1F 

b1 = 2/(R2C) b1 = 2/R2 
R1R2 C2 = 1 R1R2 = 1 

H(s) =
1sbs

s

1
2

2

++
= ( ) ( )2

212
2

2

CRR1sCR2s
s
++

 H(s) =
1sbs

s

1
2

2

++
= ( ) ( )212

2

2

RR1sR2s
s
++

 

  
 

|H(jω)|dB = 20log10
( ) n2

c1

1

ωω+
 = -10log10(1 + (ωc /ω)2n) 

 
Figure 15.24 illustrates another method used to describe a higher-order filter based upon the four 
variables:  Ap, As, ωp, ωs. 

As = |H(jωs)|dB = 20log10
n2

s1

1

ω+
 = -10log10(1 + ωs

2n) 

 
 
If we assume that ωp is the cut off frequency then the order of the Butterworth filter is   

n = ( )cs10

s

log
A05.0
ωω

−

 (Low Pass Filter)  
 n = ( )sc10

s

log
A05.0
ωω

−

 (High Pass Filter)
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Advantages of the Butterworth filter versus the cascaded filter 
i. As the order of the Butterworth increases the cutoff frequency remains the same 
ii. A lower-order Butterworth filter achieves the same design specification as a higher order  

cascaded filter 
iii. It takes less operational amplifiers to implement a Butterworth filter with the same order 

as the cascaded filter 
 

 
Example 15.4.1 (Butterworth order low-pass): 
Determine the order of a low-pass Butterworth filter that has a cutoff frequency of 1 kHz and a 
gain of no more than -50 dB at 6 kHz.  What is the actual gain in dB at 6 kHz?  
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Example 15.4.2 (Butterworth low-pass filter): 
a)  Using 1 kΩ resistors and ideal op amps, design a circuit that will implement the low pass 

Butterworth filter specified in Example 15.4.1.  The gain in the passband is one. 
b) Draw the circuit diagram of the filter and label all component values. 
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Example 15.4.3(Butterworth order high-pass): 
Determine the order of a high-pass Butterworth filter that has a cutoff frequency of 7 kHz and a 
gain of at least -30 dB at 2 kHz.  What is the actual gain, in decibels, at 2 kHz? 
  
 
 
 
 
 
 
 
 
 
 
 
Example 15.4.4 (Butterworth high-pass filter): 
a)  Using 10 nF capacitors and ideal op amps, design a circuit that will implement the filter 

specified in Example 15.4.3.  The gain in the passband is one.  
b) Draw the circuit diagram of the filter and label all component values.  
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Lecture 9 - Example 15.4.6 - Butterworth
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Example 15.4.5(broadband Butterworth bandpass filter): 
a) Design a broadband Butterworth bandpass filter with a lower cutoff frequency of 500 Hz and 

an upper cutoff frequency of 4.5 kHz.  The passband gain of the filter is 20 dB.  The gain 
should be down at least 20 dB at 200 Hz and 11.25 kHz.  Use 15 nF capacitors in the high-
pass circuit and 10 kΩ resistors in the low-pass circuit. 

 
b) Draw the circuit diagram of the filter and label all component values. 
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Example 15.4.6 (broadband Butterworth bandreject filter): 
a) Design a broadband Butterworth bandreject filter with a lower cutoff frequency of 1.0 kHz 

and an upper cutoff frequency of 10.0 kHz.  The passband gain of the filter is 40 dB.  The 
gain should be down at least 40 dB at 5.0 kHz and 6.0 kHz.  Use 10 μF capacitors in the 
high-pass circuit and 1 kΩ resistors in the low-pass circuit. 

 
b) Draw the circuit diagram of the filter and label all component values. 
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Lecture 9-2: Narrowband bandpass and bandreject filters 
Reading: 15.5 

 
Objectives: To analyze narrowband bandpass and bandreject filters to determine the cutoff 

frequencies, resonant frequency, gain, bandwidth and quality factor 
 To design narrowband filters to meet certain design specifications 
  
15.5 Narrowband Bandpass and Bandreject Filters 
Cascaded active filters with high quality factors (narrowband filters) require operational 
amplifiers.  Unlike the broadband filters, these filters do not have discrete poles but complex 
poles.  A narrowband or high Q filter must have Q = ωo/β > 0.5.  The narrowband bandpass and 
band reject prototypes are provided on the following table. 
 

Bandpass Bandreject (twin-T notch filter) 

 

 

H(s) = 2
o

2 ss
sK
ωβ

β
++

 H(s) = 
( )

2
o

2

2
o

2

ss
s

ωβ
ω
++

+
 

H(s) = ( )
( ) ( )2

3eq3
2

1

CRR1sCR/2s
CRs

++
−  H(s) = ( )

( )222

222

CR1sRC
)1(4s

CR1s

+⎟
⎠
⎞⎜

⎝
⎛ −+

+
σ

 

β  = 2/(R3C) β  = 4(1 - σ)/(RC) 

ωo
2

 = 1/(ReqR3C2) ωo
2

 = 1/(R2C2) 

Req = R1 || R2 

Kβ = -1/(R1C) 

K = -R3/(2R1)  = Vo/Vi (inverting amplifier) 

σ = 1 – β/(4ωo)  

prototype assuming C = 1 F, ωo = 1 rad/s 
R1 = Q/|K|, R2 = Q/(2Q2 – |K|), R3 = 2Q R = 1 Ω, σ = 1-1/(4Q) 
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Example 15.5.1: 
For the following circuit, 

a) determine the transfer function, H(s) 
b) what is the gain? 
c) what is the bandwidth? 
d) what is the resonant frequency? 
e) what is the quality factor? 
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Example 15.5.2:  
For the following circuit, 

a) determine the transfer function, H(s) 
b) what is the gain? 
c) what is the bandwidth? 
d) what is the resonant frequency? 
e) what is the quality factor? 
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Lecture 9-3: Narrowband bandpass and bandreject filters 
Reading: 15.5 

 
Objectives: To analyze narrowband bandpass and bandreject filters to determine the cutoff 

frequencies, resonant frequency, gain, bandwidth and quality factor 
 To design narrowband filters to meet certain design specifications 
 
Example 15.5.1(Narrowband bandpass): 
Design a bandpass filter which has a center frequency of 2 kHz, a quality factor of 8, and the 
pass band gain with a magnitude of 2.  Use 0.01 μF capacitors in your design.  Compute the 
transfer function of the circuit and sketch the Bode plot for the magnitude response. 
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Example 15.5.2(Narrowband bandpass): 
Design an active bandpass filter with Q = 8, |K| = 5, and ωo = 1000 rad/s.  Use 1 μF capacitor 
and specify the value of the resistors. 
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Example 15.5.3(Narrowband bandreject): 
Design an active bandreject filter with a center frequency of 10 krad/s and a bandwidth of 1.250 
krad/s.  Use0 .01 μF capacitors in the design. 
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Example 15.5.4(Narrowband bandreject): 
Design an active unity-gain bandreject filter with ωo = 1000 rad/s and Q =  4.  Use 2 μF 
capacitors and specify the value of the resistors andσ. 
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Lecture 10-1: The Terminal Equations and Two-Port Parameters 
Reading: 18.1-2 

 
Objectives: To introduce two-port circuits 
  To define terminal equations and two-port parameters 
  To define the terms: symmetrical, reciprocal 
  To define the terms: immittance, transmission, and hybrid parameters 
 
Terminal pairs on a circuit where signals are either fed in or extracted are referred to as the ports 
of the system. 
 
A two-port  network is an electrical network with two separate ports for input and output. 
 

 
 
Restrictions: 
i. there can be no energy stored within the circuit 
ii. there can be no independent sources within the circuit 
iii. the current into the port must equal the current out of the port 
iv. all external connections must be made to either the input port or the output port 
 
Similar to the fundamental principle of analysis for Thevenin and Norton equivalence and 
operational amplifiers only the terminal variables (I1, I2, V1, V2) are of interest not the currents 
and voltages inside the circuit. 
 
The terms that relate the voltages and currents of a two-port network are the parameters. 
 
The open-circuit impedance parameters or z parameters have the units of ohms.  These are 
found by open-circuiting the input or output port. 
 

z11 = 
0I1

1

2

I
V

=

  z12 = 
0I2

1

1

I
V

=

  z21 = 
0I1

2

2

I
V

=

  z22 = 
0I2

2

1

I
V

=

 

 
z11 = open-circuit input impedance 
z12 = open-circuit transfer impedance from port 1 to port 2 
z21 = open-circuit transfer impedance from port 2 to port 1 
z22 = open-circuit output impedance 
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When z11 = z22 the two-port network is said to be symmetric.  When the two-port network is 
linear and has no dependent sources, the transfer impedances are equal (z12 = z21) and the two-
port network is said to be reciprocal.  Any two-port network made entirely of resistors, 
capacitors, and inductors must be reciprocal. 
 
The impedance parameters can also be described using the following matrix relationship. 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

2

1

2221

1211

2

1

I
I

zz
zz

V
V

 

Example 18.1.1: 
Find the z parameters for the following circuit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Example 18.1.2: 
Find the z parameters for the following circuit.  
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Example 18.1.3 
Find I1 and I2 in the following circuit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Admittance parameters or y parameters have the units of Siemens.  The values are determined by setting V1 = 0 or 
V2 = 0 (input and output short-circuited).  These parameters are also called the short-circuit admittance 
parameters. 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

2

1

2221

1211

2

1

V
V

yy
yy

I
I

 

 
 

y11 = 
0V1

1

2

V
I

=

  y12 = 
0V2

1

1

V
I

=

  y21 = 
0V1

2

2

V
I

=

  y22 = 
0V2

2

1

V
I

=

 

 
y11 = short-circuit input admittance 
y12 = short-circuit transfer admittance from port 2 to port 1 
y21 = short-circuit transfer admittance from port 1 to port 2 
y22 = short-circuit output admittance 
 
The impedance and admittance parameters are collectively referred to as the immittance 
parameters. 
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The convert between the immittance parameters, use the following 
 

y to z parameters z to y parameters 

z11 = 
y

y22

Δ
 y11 = 

z
z22

Δ
 

  

z12 = 
y
y12

Δ
−  y12 = 

z
z12

Δ
−  

z21 = 
y
y21

Δ
−  y21 = 

z
z21

Δ
−  

z22 = 
y

y11

Δ
 y22 = 

z
z11

Δ
 

Δy = y11y22 – y12y21 Δz = z11z22 – z12z21 
 
Example 18.1.4: 
Obtain the y parameters for the following circuit. 
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Example 18.1.5: 
Obtain the y parameters for the following circuit. 
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Lecture 10-2:  The Terminal Equations and Two-Port Parameters 
Analysis of Terminated two-port circuits 

Reading: 18.1-3 
 
Objectives: To introduce two-port circuits 
  To define terminal equations and two-port parameters 
  To define the terms: symmetrical, reciprocal 
  To define the terms: immittance, transmission, and hybrid parameters 
 
The a and b parameters are called the transmission parameters because they describe the voltage 
and current at one end of the two-port network in terms of the voltage and current at the other 
end. 
 
V1 = a11V2 - a12I2 
I1 = a21V2  - a22I2 

V2 = b11V1  - b12I1 
I2 = b21V1  - b22I1 

a11 = 
0I2

1

2

V
V

=

open-circuit voltage ratio b11 = 
0I1

2

1

V
V

=

 open-circuit voltage gain 

a12 = 
0V2

1

2

I
V

=

− negative short-circuit transfer impedance (Ω) b12 = 
0V1

2

1

I
V

=

− negative short-circuit transfer impedance (Ω) 

a21 = 
0I2

1

2

V
I

=

open-circuit transfer admittance (S) b21 = 
0I1

2

1

V
I

=

open-circuit transfer admittance (S) 

a22 = 
0V2

1

2

I
I

=

−  negative short-circuit current ratio b22 = 
0V1

2

1

I
I

=

− negative short-circuit current gain 

 
Example 18.3.1: 
The following measurements pertain to a two-port circuit operating in the sinusoidal steady 
state.  With port 2 open, a voltage equal to 150 cos 4000t V is applied to port 1.  The current into 
port 1 is 25 cos(4000t - 45°) A, and the port 2 voltage is 100 cos (4000t + 15°) V.  With port 2 
short-circuited, a voltage equal to 30 cos 4000t V is applied to port 1.  The current into port 1 is 
1.5 cos(4000t + 30°) A, and the current into port 2 is 0.25 cos (4000t + 150°) A.  Find the a 
parameters that can describe the sinusoidal steady-state behavior of the circuit. 
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The h and g parameters relate cross variables, that is an input voltage and output current to an 
output voltage and input current.  The h and g parameters are called hybrid  parameters.  The g 
parameters are also called inverse hybrid parameters. 
 
V1 = h11I1 + h12V2 
I2 = h21I1 + h22V2 

I1 = g11V1 + g12I2 
V2 = g21V1 + g22I2 

h11 = 
0V1

1

2

I
V

=

short-circuit input impedance (Ω) g11 = 
0I1

1

2

V
I

=

open-circuit input admittance (S) 

h12 = 
0I2

1

1

V
V

=

open-circuit reverse voltage gain g12 = 
0V2

1

1

I
I

=

short-circuit reverse current gain 

h21 = 
0V1

2

2

I
I

=

short-circuit forward current gain g21 = 
0I1

2

2

V
V

=

open-circuit forward voltage gain 

h22 = 
0I2

2

1

V
I

=

open-circuit output admittance (S) g22 = 
0V2

2

1

I
V

=

short-circuit output impedance (Ω) 

 
Example 18.3.2: 
Determine the Thevenin equivalent at the output port of the following circuit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

ECE 200 CIRCUITS & SYSTEMS  Winter 2008/09 

C.A. Berry Lec10-2.doc Page 3 of 5  

Table 18.1 in the textbook describes all of the relationships between the two-port parameters. 

If a two-port circuit is reciprocal then the following relationships must exist. 

i. z12 = z21 

ii. y12 = y21 

iii. a11a22 – a12a21 = Δa = 1 

iv. b11b22 – b12b21 = Δb = 1 

v. h12 = -h21 

vi. g12 = -g21 

A two-port circuit is reciprocal if the interchange of an ideal voltage source at one port with an 

ideal ammeter at the other port produces the same ammeter reading.  A two-port circuit is also 

reciprocal if the interchange of an ideal current source at one port with an ideal voltmeter at the 

other port produces the same voltmeter reading. 

 

A reciprocal two-port circuit is symmetric if its ports can be interchanged without disturbing the 

values of the terminal currents and voltages.  Figure 18.6 in the textbook shows four examples of 

symmetric two-port circuits.  The following relationships exist among the port parameters. 

i. z11 = z22 

ii. y11 = y22 

iii. a11 = a22  

iv. b11 = b22  

v. h11h22 – h12h21 = Δh = 1 

vi. g11g22 – g12g21 = Δg = 1 

 
18.3 Analysis of the Terminated Two-Port Circuit 
In a typical application of a two-port network, the circuit is driven at port 1 and loaded at port 2.  
The following figure shows an example of a terminated two-port model.   
 

Terminated Two-Ports 

 



 
 

ECE 200 CIRCUITS & SYSTEMS  Winter 2008/09 

C.A. Berry Lec10-2.doc Page 4 of 5  

 
The six characteristics of the terminated two-port circuit define its terminal behavior: 
 

• the input impedance Zin = V1/I1 or the admittance Yin = I1/V1 

• the output current I2 

• the Thevenin voltage and impedance with respect to port 2 

• the current gain I2/I1 

• the voltage gain V2/V1 

• the voltage gain V2/Vg 

 
Table 18.2 in the textbook includes all of the terminated two-port equations.  The z and y 

parameters for a terminated two-port are given below.  The following table illustrates the y and z 

parameters for the terminated two-port model.   
 
  z parameters y parameters 
input impedance/ 
admittance 

Zin/Yin 

L22

2112
11 Zz

zzz
+

−  
L22

L2112
11 Zy1

Zyyy
+

−  

output current I2 
( )( ) 2112L22g11

g21

zzZzZz
Vz

−++
−

 
Lgg11L22

g21

ZyZZyZy1
Vy

Δ+++
 

Thevenin voltage Vth 
( ) g

g11

21 V
Zz

z
+

 ( ) g
g22

21 V
yZy

y
Δ+

−  

Thevenin 
impedance 

Zth 

g11

2112
22 Zz

zzz
+

−  
g22

g11

yZy
Zy1

Δ+
+

 

current gain I2/I1 

L22

21

Zz
z
+

−  
L11

21

yZy
y
Δ+

 

voltage gain V2/V1 
zZz

Zz

L11

L21

Δ+
 

L22

L21

Zy1
Zy

+
−  

voltage gain V2/Vg 
( )( ) 2112L22g11

L21

zzZzZz
Zz

−++
 ( )( )L22g11Lg2112

L21

Zy1Zy1ZZyy
Zy

++−
determinant of 
parameter matrix 

 Δz = z11z22 – z12z21 
 

Δy = y11y22 – y12y21 
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Example 18.3.3: 
For the following circuit, which is the same as Example 18.3.2,   
a. determine the value of a load resistor placed across the output port for maximum power 

transfer 
b. For the selected resistor, what is the value of the power delivered to the load?  
   

Conversion from h to y 
parameters 
 
Δh = h11h22 – h12h21

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=⎥
⎦

⎤
⎢
⎣

⎡

1111

21

11

12

11

2221

1211

h
h

h
h

h
h

h
1

yy
yy

Δ
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Lecture 10-3: Analysis of Terminated two-port circuits 
Reading: 18.3 

 
Objectives: To analyze terminated two-port circuits 
Example 18.3.1: 
The following two-port circuit is described in terms of the following y parameters.  
 
y11 =  0.15 S  y21 =  -0.25 S  y12 = -0.05 S  y22  = 0.25 S 
 
a) Find the phasor voltage, V2 
b) Find the average power deliver to the 5kΩ load. 
c) Find the average power delivered to the input port. 
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Example 18.3.2: 
The a parameters and source and load characteristics of a terminated two port network are: 
  
a11 = 0.5m  a12 = 10Ω  a21 = 1μS  a22 = -30m  
 
Vg = 50∠0° mV Zg = 100 Ω ZL = 5kΩ 
 
a) Calculate the average power delivered to the load resistor 
b) Calculate the load resistance for maximum average power 
c) Calculate the maximum average power delivered to the resistor in b) 
 
Conversions from a to z parameters (Δa  = a11a22 – a12a21) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

21

22

21

2121

11

2221

1211

a
a

a
1

a
a

a
a

zz
zz

Δ
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18.3 Interconnected Two-Port Circuits 
Synthesizing a large, complex system is usually made easier by first designing subsections of the 
system.  If the subsections are modeled by two-port circuits, synthesis involves the analysis of 
interconnected two-port circuits. 
 
Two-port circuits may be interconnected five basic configurations: 
a) cascade (port 2 feeds into port 1 of the second network) 
b) series-series (port1a is in series with port 1b, port 2a is in series with port 2b) 
c) parallel-parallel (port1a is in parallel with port 1b, port 2a is in parallel with port 2b) 
d) series-parallel (port 1a is in series with port 1b, port 2a is in parallel with port 2b) 
e) parallel-series (port 1a is in parallel with port 1b, port 2a is in series with port 2b) 
 
These five basic configurations are shown in the following figure. 

 

 
 
Using the corresponding two-port matrix representations, complicated networks can be analyzed 
by connecting elementary two ports.  

a) cascaded connection:   use a-parameters:   a = [a1][a2] 
b) series-series connection:  use z-parameters:   z = [z1] + [z2] 
c) parallel-parallel connection:  use y-parameters:  [y] = [y1] + [y2] 
d) series-parallel connection:  use h-parameters:   [h] = [h1] + [h2] 
e) parallel-series connection:  use g-parameters:  [g] = [g1] + [g2] 
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Example 18.3.1 (cascaded connection): 
Two identical amplifiers are connected in cascade, as shown in the following Figure.  Each 
amplifier is described in terms of its h parameters.  The h parameters are: 
 
h11 = 1 kΩ   h12 = 0.15m   h21 = 100   h22 = 100μS 
 
 Find the voltage gain V2/Vg 

 

 
Step 1.  Convert the [h] parameters to the [a] parameters.   

 a11′ = 
21h
hΔ

−   a12′ = 
21

11

h
h

−   a21′ = 
21

22

h
h

−   a22′ = 
21h
1

−   

Step 2.  Convert the [a] parameters to the interconnected cascaded network,   
  [a]=[a′][a′′] 
  a11 = a11′a11′′ + a12′a21′′  
  a12 = a11′a12′′ + a12′a22′′  
  a21 = a21′a11′′ + a22′a21′′ 
  a22 = a21′a12′′ + a22′a22′′ 

Step 3.  Find the voltage gain, 
g2212Lg2111

L

g

2

ZaaZ)Zaa(
Z

V
V

+++
=  
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Example 18.3.2 (series-series connection): 
In the following figure, let y12 = y21 = 0, y11 = 2 mS, and y22 = 10 mS.  Find Vo/Vs. 

 
ans: .09375 
 
Step 1.  Convert the [y] parameters to [z] parameters 

  z11′ = 
y

y22

Δ
  z12′ = 

y
y12

Δ
−   z21′ = 

y
y21

Δ
−   z22′ = 

y
y11

Δ
 

  Δy = y11y22 – y12y21 
 
Step 2.  The 100Ω resistor under the [y] two-port has 
  z11′′ = z12′′ = z21′′ = z22′′ = 100Ω 
 
Step 3.  Find the [z] parameters for the overall interconnected series network 
  [z] = [za] +[zb] 

Step 4.  Find the voltage gain, ( )( ) 2112L22g11

L21

s

o

zzZzZz
Zz

V
V

−++
=  
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Example 18.3.3 (parallel-parallel connection): 
Obtain the h parameters for the following network. 
 

 
ans: 0.167Ω, 0.5, 0.5, 4.5S 
 
Step 1.  Obtain the y parameters for the top network [ya] 
Step 2.  Obtain the y parameters for the bottom network [yb] 
Step 3.  Find the y parameters for the overall interconnected parallel network 
  [y] = [ya] +[yb] 
Step 4.  Convert the y parameters to h parameters 
  h11 = 1/y11  h12 = -y12/y11  h21 = y21/y11  h22 = Δy/y11 
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