Example

The connections as A, D and E are ball and socket types. The rod AC can be modeled as weightless. Find the tension in each cable and the reaction at A.

$$T_{BR} = T_{BE} \stackrel{?}{=} a_{BE} \stackrel{?$$

$$T_{BE}\begin{bmatrix} -4/11 \\ 7/11 \\ -4/11 \end{bmatrix} + T_{BD}\begin{bmatrix} -4/11 \\ 7/11 \\ 4/11 \end{bmatrix} + \begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix} + \begin{bmatrix} 0 \\ -F \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

X-component:

$$-\frac{G}{II} \frac{?}{T_{BE}} - \frac{G}{II} \frac{?}{T_{BD}} + A_{X} = 0$$
 (1)

y-component:

$$\frac{7}{11}T_{BE} + \frac{7}{11}T_{BD} + A_y - F = 0$$
 (2)

Z-component:

$$-\frac{6}{11} T_{BE} + \frac{6}{11} T_{BD} + A_{Z}$$
 =0 (3)

Three equations, five unknowns. Let's look @

$$\vec{\Gamma}_{BA} \times \vec{A} = \begin{vmatrix} \hat{1} & \hat{J} & \hat{E} \\ -G & O & O \end{vmatrix} = \begin{vmatrix} GA_z \\ GA_z \end{vmatrix}$$

$$A_X A_Y A_Z \begin{vmatrix} GA_Y \\ GA_Y \end{vmatrix}$$

$$F_{RC} \times F = \begin{bmatrix} 1 & 3 & F \\ 4 & 0 & 0 \\ 0 & -F & 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -4F \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 6A_z \\ -6A_x \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -4F \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ 6 \end{bmatrix}$$

X-component

$$-GA_{q}-HF=0 \tag{5}$$

Five equations with five unknowns. Solving ...

$$A_x = 1200$$
 lb

Example¹

- THRUST BEARING

For the assembly shown, find the tension T and the reactions at C. The weight of the assembly is negligible.

TAKE MOMENTS ABOUT O TO ELIMINATE C

$$\begin{split} \Sigma \vec{H}_{0} &= 0 = \vec{\Gamma}_{0} \times \vec{F} + \vec{\Gamma}_{0E} \times \vec{T}_{1} + \vec{\Gamma}_{0E} \times \vec{T}_{2} + \vec{M} \\ 0 &= (A.2\hat{j} + 2\hat{F}) \times (-C + \hat{j}) + (1.6\hat{1} - 2.4\hat{j}) \times (\tau \hat{F}) + (1.6\hat{1} - 2.4\hat{j}) \times (\tau \hat{f}) \\ &= 12\hat{1} - 1.6\tau \hat{j} - 2.4\tau \hat{1} + 2.4\tau \hat{F} + M.\hat{J} + M.\hat{F} = 0 \\ \vec{O} &= (12 - 2.4\tau)\hat{1} \end{split}$$

Taken from Beer and Johnson, Vector Mechanics for Engineers, 6th Ed.

$$(y-comp) = -1.6T + My=0$$
 $My=1.6T=8$ | bin $z-comp$ $Z.4T + Mz=0$ $Mz=-12$ | $15-n$