Example

Consider the structure made up of thirteen weightless members that are connected to each other via smooth pins.
a) How many two-force members are in the structure?
b) Find the reactions at the pin H and the roller G.
c) Find the internal force in each two-force member you indentified in part a). (Hint: Draw an FBD for each individual pin that connects two-force members. Start at a location where there are only two unknowns, such as point A.)

a) ALL 13 MEMBERS ARE TWO-FCRCE MEMBERS

$$
\begin{aligned}
& \sum F_{x}=0 \quad H_{x}=0 \\
& \sum F_{y}=0 \\
& -P+C+H_{y}=0 \quad(1)
\end{aligned}
$$

$$
\begin{aligned}
& \sum M_{H}=0 \\
& l_{1} P-l_{2} C=0 \quad C=\frac{l_{1}}{l_{2}} P=\frac{32^{\prime}}{8^{\prime}}=48+10
\end{aligned}
$$

FROM (1)

$$
H_{y}=p-C_{1}=12-48=-36 \mathrm{kips}=36 \mathrm{kips}
$$

c) $P I N A$

$$
\begin{align*}
& \theta=\tan ^{-1}\left(\frac{9}{2 Q^{*}}\right)=-520.56^{\circ} \\
& \sum F_{y}=0 \\
& -P-F_{A C} \sin \theta=0 \\
& F_{A C}=-P / \sin \theta=-12 / \sin 20.56^{\circ}=-34.18 \mathrm{kips} \tag{C}
\end{align*}
$$

$$
\begin{align*}
& \sum F_{X}=0 \\
& F_{A B}+F_{A C} \cos \theta=0 \quad F_{A B}=-F_{A C} \cos \theta=-\left(-34.18 K_{\text {ip }}\right) \cos \left(20.56^{\circ}\right)=32 k 1 p S
\end{align*}
$$

CO TO B NEXT, OR C? CO TO C, BIC ONLY TWO UNICNOWNS THERE

FBD C

$$
\begin{aligned}
& F_{A C}=34.2 \mathrm{kip} \\
& \uparrow F_{c i s}
\end{aligned}
$$

$$
\gamma=90^{\circ}-\theta \quad \text { CE }<_{x}
$$

$$
=69.44^{\circ}
$$

$$
\sum F_{X}=0 \quad F_{A C}+F_{I_{E}}=0
$$

$$
F_{C E}=-F_{A C}=-34.18 \mathrm{kip} \quad 34.18 \mathrm{kip} \text { (c) }
$$

PROLEEDTO B:

USE SFy AS A CHECK:
$\Sigma F_{y} \stackrel{?}{=} 0$

$$
-H_{y}-F_{H a} \sin \theta \stackrel{?}{\because} 0
$$

$$
-36 \text { kip }-(-48.16 \mathrm{kip}) \sin (48.36) \stackrel{?}{=} 0=0
$$

$$
\begin{aligned}
& \text {... ANALYSIS PROCEEDS IN SAME wAY } \\
& \text { YIELDING... } \\
& F_{B D}=F_{A B}=32 \mathrm{kTP} \quad 32 \mathrm{kiP} \text { (T) } \\
& F_{B E}=0 \\
& F_{D F}=F_{F H}=32 \mathrm{kiP} \\
& F_{D E}=F_{D G}=F_{F G}=0 \ldots . \\
& F_{E G}=F_{C E}=-34.18 \mathrm{kiP} \\
& 34.18 \text { kion (c) }
\end{aligned}
$$

Example

Find the force in each member of the truss sown below and state whether it is in tension or compression.

$$
\rightarrow \text { :ZERO FORCE MEMBERS }
$$

FED WHOLE THING (LEFT)

$$
\begin{aligned}
& \Sigma M_{H}=0 \\
& l_{1} P-l_{2} G=0 \\
& G_{i}=\frac{l_{1}}{l_{2}} P=\frac{1 G^{\prime}}{g^{\prime}}(12 \mathrm{Kip})=24 \mathrm{kip}
\end{aligned}
$$

$$
\begin{aligned}
& \sum F_{y}=0 \quad-P+a-H_{y}=0 \\
& H_{y}=a-P=24-12=[12 \mathrm{kip}]
\end{aligned}
$$

FBI D

$$
\theta=48.36^{\circ}
$$

$$
\begin{aligned}
\Sigma F_{X}=0 \quad-F_{D F}+F_{G H} \cos \theta & =0 \\
F_{G H} & =F_{D F} / \cos \theta
\end{aligned}=\ldots=16.1 \mathrm{kip} \text { (c) }
$$

CANUSE SFy AS A CHECK.

$$
\begin{aligned}
& \sum F_{y} \stackrel{?}{=} 0 \\
& F_{C_{H}} \sin \theta-H_{y} \stackrel{?}{=} 0 \\
& (16.1 \text { kip })\left(\sin 48.36^{\circ}\right)-12 \geqslant 0
\end{aligned}
$$

Example

Find the force in each member of the truss sown below and state whether it is in tension or compression.

NO ZERO-F̈ORCE MEMBERS!
FED WHOLE THING y

$$
\begin{aligned}
& \sum F_{x}=0 \\
& -C_{x}+Q=0 \\
& Q=C_{x}=600 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \sum F_{y}=0 \\
& A-P-C y=0 \quad \begin{aligned}
C y & =A-P \\
& =600-400=200 \mathrm{~N}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \sum M_{c}=0 \\
&-\left(l_{2}+l_{3}\right) A+l_{3} P+l_{1} Q=0 \\
& A=\frac{l_{3} P+l_{1} Q}{l_{2}+l_{3}}=\frac{(3 n 9)(400 N)+(4)(600)}{6 M} \\
&=\underbrace{600 N}
\end{aligned}
$$

START AT A. WHY?

$$
\begin{aligned}
& \sum F_{y}=0 \\
& A-F_{A B} \sin \theta=0 \quad F_{A B}=\frac{A}{\sin \theta}=A \frac{5}{4} \\
& =600 \mathrm{~N} \frac{5}{4}= \\
& \\
& \sum F_{x}=0
\end{aligned}
$$

$$
-F_{A B} \cos \theta+F_{A D}=0 \quad F_{A D}=F_{A B} \cos \theta
$$

$$
-750 \times \frac{3}{5}=4150 \mathrm{~N}(\mathrm{~T}
$$

$$
\begin{aligned}
& \sum F_{y}=0 \\
& -P+F_{A B} \sin \theta-F_{B D} \sin \theta=0
\end{aligned}
$$

$$
F_{A B}=750 N
$$

$$
F_{B D}=F_{A B}-P / \sin \theta=750 \mathrm{~N}-\frac{400 \mathrm{~N}}{(4 / 5)}=250 \mathrm{NT}
$$

$$
\begin{aligned}
& \sum F_{x}=0 \\
& F_{A B} \cos \theta+F_{B D} \cos \theta-F_{B C}=0
\end{aligned}
$$

$$
F_{B C}=\left(F_{A B}+F_{D D}\right) \cos \theta=(750 N+250 \mathrm{~N}) \frac{3}{5}=600 \mathrm{~N} \text { (c) }
$$

Coiver):-
1.2 BN (TYPICAL)

Find: FORCES in DF, DG, $\$ E G$
Soln.
EBD WMOLE THMML

$$
\begin{aligned}
& H \sum F_{x}=0 \quad \Delta x=0 \\
& H_{Ð} \sum M_{A}=0 \\
& \because-(2.25)(1.2)-(6.25)(1.2)-(10.25)(1.2) \\
& -(14.25)(1.2)-(18.25)(1.2)
\end{aligned}
$$

$$
\begin{aligned}
& 1 \underset{+}{ } \underset{y}{ } F_{y}=0 \\
& \quad A_{y}-5 * 12+L=0
\end{aligned}
$$

$$
A_{y}=3 t n
$$

MAKE CUT AS SHOWN:
FBD of LEF SECTIONA

3 EN
${ }_{+} \sum F_{y}=0$

$$
\begin{gathered}
3-12-12-F_{0 C}\left(\frac{3}{5}\right)=0 \\
F_{00}=1 R N Q
\end{gathered}
$$

(4) $\Sigma M_{L}=0$

$$
-(10.25)(3)+(8)(1.2)+(4)(1.2)
$$

$$
-(3)\left(F_{D F}\right)=0
$$

$$
F_{D F}=-5.45 \mathrm{kN}
$$

$$
F_{O F}=5.4512 \times(c)
$$

$$
+\rightarrow \sum F_{x}=0
$$

$$
F_{L G}+F_{D C}\left(\frac{4}{5}\right)+F_{D F}=0
$$

$$
F_{E G}=4.65 \mathrm{kN}(\mathrm{I})
$$

