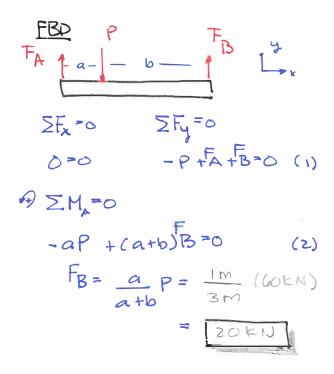
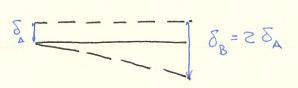

Example


A rigid beam is supported by two vertical rods. Rod A has a diameter of $d_A = 25$ mm and rod B has a diameter of $d_B = 10.2$ mm. Both rods are made of steel (E=210 GPa). For the 60 kN force applied as shown,

- a) find the reactions at A and B, and
- b) the displacements of each rod.

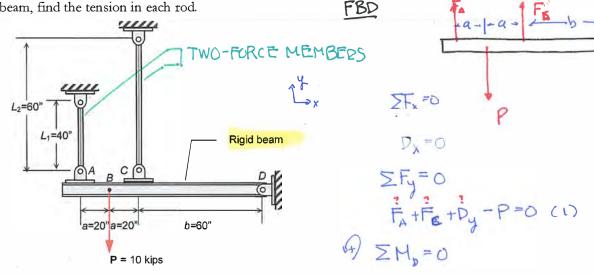
FROM (1)

a)



6) FBO ROD A W/ CUT:

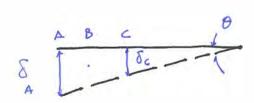
SIMILARLY ...


$$\delta_{B} = \frac{F_{B}L_{2}}{E \pi d_{B}^{2}} = \frac{(20 \times 10^{5} \text{H})(2 \text{m})}{(20 \times 10^{5} \text{H})(2 \text{m})} = [2.331 \text{ mm}]$$

NOTE HOW IT DEFLECTS

Example

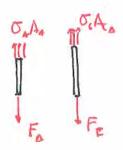
Two steel $(E=30\times10^3 \text{ ksi})$ rods both with cross sectional area $A=1.0 \text{ in}^2$ are used to support a rigid beam connected to a wall via a smooth pin. A 10 kip point load is applied to the beam at the location shown. Neglecting the weight of the beam, find the tension in each rod.



TWO EQNS, 3 UNKNOWNS!
FBD > of RODS DON'T HELP

STATICALLY INDETERMINATE

MUST LOOK @ GEOMETRY of DEFORMATION.


BECAUSE BEAM IS RIGID:

FRUM SIMILAR TRIANGLES

$$\frac{\delta_{A}}{\delta_{A}} = \frac{\delta_{c}}{\delta_{c}}$$
 (3)

ADDED TWO UNKNOWNS! LOCK AT RODS A & C

$$\delta_c = \frac{F_c L_2}{E_c A_c}$$
 (5)

TWO MORE EARLS, NO NEW UNKNOWNS!

SUB INTO (2)

-
$$(2a+b)F_A + (a+b)P - b b (\frac{L_1}{L_2})F_A = 0$$

$$F_{A} = \frac{(a+b)}{(2a+b)} \cdot \frac{b^{2}}{(2a+b)} \left(\frac{L_{1}}{L_{2}}\right)$$

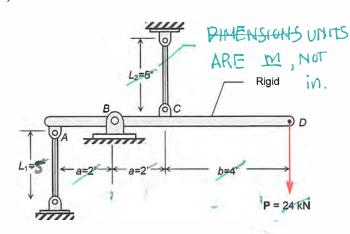
$$= \frac{20'' + 60''}{(40'' + 60'')} + \frac{(60'')^{2}}{(40'' + 60'')} \left(\frac{40''}{60''}\right)$$

$$= 6.451 \text{ kips}$$

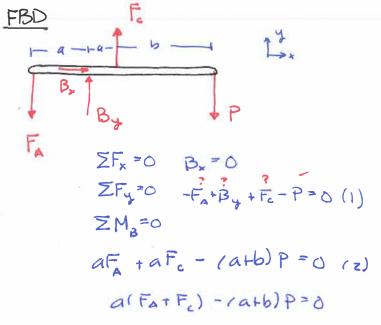
FROM (6)

INEWIS FIND STRESS IN EA. RODE O.

$$tan'(\frac{S_a}{a}) = 0 = tan'(\frac{0.0129M}{2m}) = [0.36°]$$
 (a)


NOTE:
$$\varepsilon_{A} = \frac{S_{A}}{L_{1}} = \frac{0.0129 \, \text{m}}{5 \, \text{m}} = 0.002 = 0.2\%$$

BIG STRAIN! REMEMBER YIELD? PETINED @ 0.02%.


Example

A rigid, weightless beam is supported by a smooth pin at B. Two aluminum (E=70 GPa) rods, both with cross sectional area $A=200 \text{ mm}^2$, also support the rod at pins A and C. For the 24 kN load at D,

- find the rotation angle of the rod,
- the force in each rod, and
- the stress in each rod.

GEONETRY & PEFOR MATION

FROM SIMILAR TRIANGLES $\hat{S}_{a} = \hat{S}_{c} \quad (3) \quad \theta = \pm 2n^{-1} \left(\frac{\delta_{a}}{a} \right)$

STRESS/STRAIN

$$S_{A} = \frac{F_{a}L_{1}}{E_{a}A_{a}} \quad (u) \qquad S_{E} = \frac{F_{c}L_{z}}{E_{B}A_{B}} \quad (5)$$

$$S_{\rm c} = \frac{F_{\rm c} L_{\rm z}}{E_{\rm B} A_{\rm B}}$$
 (5)

FIVE EQNS & FIVE UNKS CAN SOLVE!

(3), (4) \$ (5) alve

$$2aF_{A} = (a+b)P=0$$

$$F_{A} = \frac{(a+b)P}{2a} = \frac{(6m)(24kn)}{(4m)}$$

 $\frac{\text{F20N (U)}}{\delta_{A}} = \frac{(36\text{KN})(5\text{ m})}{(706\text{Pa})(200)\times10^{-6}\text{ m}^{2}} \frac{(200)}{(200)\times10^{-6}\text{ m}^{2}} \frac{(200)}{(200)\times10^{-6}\text{ m}^{2}} = 0.0129$