Example

A rigid beam is supported by two vertical rods. Rod A has a diameter of $d_{A}=25 \mathrm{~mm}$ and $\operatorname{rod} B$ has a diameter of $d_{\mathrm{B}}=10.2 \mathrm{~mm}$. Both rods are made of steel ($\left.E=210 \mathrm{GPa}\right)$. For the 60 kN force applied as shown,
(a) find the reactions at A and B, and
(b) the displacements of each rod.

Example

Two steel ($E=30 \times 10^{3} \mathrm{ksi}$) rods both with cross sectional area $A=1.0 \mathrm{in}^{2}$ are used to support a rigid beam connected to a wall via a smooth pin. A 10 kip point load is applied to the beam at the location shown. Neglecting the weight of the beam, find the tension in each rod.

Example

A rigid, weightless beam is supported by a smooth pin at B. Two aluminum ($E=70 \mathrm{GPa}$) rods, both with cross sectional area $A=200 \mathrm{~mm}^{2}$, also support the rod at pins A and C. For the 24 kN load at D,
(a) find the rotation angle of the rod,
(b) the force in each rod, and
(c) the stress in each rod.

