Example

Two deformable bodies are subjected to an axial load of *P* as shown in the figure. Draw a free body diagram that would help you to determine the load (axial force) in each material.

Example

A composite structure made of fiber (E_f = 231 GPa) and a matrix (E_m = 3.4 GPa) is subjected to an axial load of *P* as shown in the figure. Find the load carried by the fiber, the load carried by the matrix, and the total deformation of the composite.

Example

A thin rod suspended between two fixed supports is initially in a stress free state. The rod is then uniformly heated resulting in a temperature change of the rod of ΔT . Because of the heating, the rod wants to expand. However, the fixed supports prevent this from happening resulting in a compressive stress in the rod.

- (a) Find an expression for the resulting stress in the rod in terms of Young's modulus *E*, the thermal expansion coefficient α , and the temperature change ΔT . Assume that the thermal expansion coefficient is constant.
- (b) If the rod is made of SiO₂ with E = 69 GPa and $\alpha = 0.55 \times 10^{-6} / \circ C$, what stress will a 10°C temperature change produce? Also, find the force exerted on a rod with a square cross section with side length $a = 10 \mu m$. (1 $\mu m = 1 \times 10^{-6} m$)