Course Descriptions - Computer Science and Software Engineering

Professors Anderson, Ardis, Azhar, Bagert, Chenoweth, Chidanandan, Laxer, Mellor, Merkle, Mutchler, and Wollowski

For current information on course offerings, see the department's web site: www.cs.rose-hulman.edu.

CSSE 120 Fundamentals of Software Development I 3R-3L-4C F, W, S
This course develops problem solving skills and introduces both fundamental concepts of computer science and current practices of object-oriented software development. Students complete a series of projects requiring the choice of appropriate algorithms and the use of procedural abstraction, control constructs, and elementary data structures. The projects explore current practices of object-oriented software development, such as multi-threaded event-driven programming, the development of graphical user interfaces, and interaction among objects. Students complete some projects individually, some in small groups, and one in a challenging multi-week team project. The use of a disciplined design process is emphasized in each of the projects, including good programming style and thorough testing. This course presumes no prior programming experience.

CSSE 220 Fundamentals of Software Development II 3R-3L-4C F, W, S
Prerequisite: CSSE 120
This course reinforces and extends students' understanding of current practices of producing object-oriented software. Students extend their use of a disciplined design process to include testing and space/time efficiency analysis. Students gain a deeper understanding of concepts from CSSE 120, including the use of inheritance, interfaces, polymorphism, abstract data types and encapsulation to enable software reuse and assist in software maintenance. This course introduces networking and database applications, and recursion as an example of functional programming. Students design and implement software individually, in small groups, and in a challenging multi-week team project.

CSSE 230 Fundamentals of Software Development III 3R-3L-4C W, S
Prerequisites: CSSE 220 and MA 275
This course reinforces and extends students' understanding of current practices of producing object-oriented software. Students extend their use of a disciplined design process to include formal analysis of space/time efficiency analysis and formal proofs of correctness. Students gain a deeper understanding of concepts from CSSE 220, including implementations of abstract data types by linear and non-linear data structures. This course introduces the use of randomized algorithms. Students design and implement software individually, in small groups, and in a challenging multi-week team project.

CSSE 232 Computer Architecture I 3R-3L-4C F, W Prerequisites: CSSE 120 and ECE 130
Computer instruction set architecture and implementation. Specific topics include historical perspectives, performance evaluation, computer organization, instruction formats, addressing modes, computer arithmetic, ALU design, floating-point representation, single-cycle and multi-cycle data paths, and processor control. Assembly language programming is used as a means of exploring instruction set architectures. The final project involves the complete design and implementation of a miniscule instruction set processor.
CSSE 304 Programming Language Concepts 4R-0L-4C S Prerequisite: CSSE 230 (MA 375 recommended)
Syntax and semantics of programming languages. Grammars, parsing, data types, control flow, parameter passing, run-time storage management, binding times, functional programming and procedural abstraction, syntactic extensions, continuations, language design and evaluation. Students will explore several language features by writing an interpreter that implements them.

CSSE 325 Fractals and Chaotic Dynamical Systems 4R-0L-4C Prerequisites: CSSE 220 and MA 222

CSSE 332 Operating Systems 3R-3L-4C W, S Prerequisites: CSSE 220 and CSSE 232
Students learn fundamental concepts of modern operating systems by studying how and why operating systems have evolved. Topics include CPU scheduling, process synchronization, memory management, file systems, I/O systems, privacy and security, and performance evaluation. Students implement parts of an operating system as a means of exploring the details of some of these topics.

CSSE 333 Database Systems 4R-0L-4C W Prerequisite: CSSE 220
Relational database systems, with emphasis on entity relationship diagrams for data modeling. Properties and roles of transactions. SQL for data definition and data manipulation. Use of contemporary APIs for access to the database. Enterprise examples provided from several application domains. The influence of design on the use of indexes, views, sequences, joins, and triggers. Physical level data structures: B+ trees and RAID. Survey of object databases.

CSSE 351 Computer Graphics 4R-0L-4C Prerequisites: CSSE 220 and MA 221
Computer graphics algorithms, hardware and software. Line generators, affine transformations, line and polygon clipping, interactive techniques, perspective projection, solid modeling, hidden surface algorithms, lighting models, shading, and graphics standards. Programming assignments and a final project are required.

CSSE 371 Software Requirements and Specification 4R-0L-4C F Prerequisite: CSSE 230
Basic concepts and principles of software requirements engineering, its tools and techniques, and methods for modeling software systems. Topics include requirements elicitation, prototyping, functional and non-functional requirements, object-oriented techniques, and requirements tracking.

CSSE 372 Software Project Management 4R-0L-4C W Prerequisite: CSSE 230
Major issues and techniques of project management. Project evaluation and selection, scope management, team building, stakeholder management, risk assessment, scheduling, quality, rework, negotiation, and conflict management.

CSSE 404 Compiler Construction 4R-0L-4C Prerequisites: CSSE 232 and CSSE 304 (CSSE 474 recommended)
Theory and practice of programming language translation. Lexical analysis, syntax analysis, parser generators, abstract syntax, symbol tables, semantic analysis, intermediate languages, code generation, code optimization, run-time storage management, error handling. Students will construct a complete compiler for a small language.
CSSE 413 Artificial Intelligence 4R-0L-4C Prerequisite: CSSE 220
Students investigate how to model and implement intelligent behavior using computers. Topics are chosen from how machines can: solve problems; reason and use knowledge; learn from experience; and perceive and act. Students explore these topics by implementing many of the ideas in software. Readings are drawn both from a textbook and from technical papers in recent conferences and journals.

CSSE 432 Computer Networks 4R-0L-4C Prerequisite: CSSE 220
Organization, design, and implementation of computer networks, especially the Internet. Network protocols, protocol layering, flow control, congestion control, error control, packet organization, routing, gateways, connection establishment and maintenance, machine and domain naming, security. Each of the top four layers of the Internet protocol stack: application (FTP, HTTP, SMTP), transport (TCP, UDP), network (IP), link (Ethernet).

CSSE 433 Advanced Database Systems 4R-0L-4C Prerequisite: CSSE 333
Topics selected from object-oriented databases, object-relational databases, query processing, transactions, transaction logging, concurrency control, database recovery, parallel and distributed databases, security and integrity, data mining and data warehousing.

CSSE 451 Advanced Computer Graphics 4R-0L-4C Prerequisite: CSSE 351
Advanced topics in computer graphics. Topics will be drawn from current graphics research and will vary, but generally will include ray tracing, radiosity, physically-based modeling, animation, and stereoscopic viewing. Programming assignments and a research project are required.

CSSE 453 Topics in Artificial Intelligence 4R-0L-4C Prerequisite: CSSE 413
Advanced topics in artificial intelligence. Topics will vary. Past topics have included machine game playing and machine learning. May be repeated for credit if topic is different.

CSSE 461 Computer Vision 4R-0L-4C Prerequisites: CSSE 220 and MA 221
An introduction to 3D computer vision techniques. Both theory and practical applications will be covered. Major topics include image features, camera calibration, stereopsis, motion, shape from x, and recognition.

CSSE 473 Design and Analysis of Algorithms 4R-0L-4C Prerequisites: CSSE 230 and MA 375
Students study techniques for designing algorithms and for analyzing the time and space efficiency of algorithms. The algorithm design techniques include divide-and-conquer, greedy algorithms, dynamic programming, randomized algorithms and parallel algorithms. The algorithm analysis includes computational models, best/average/worst case analysis, and computational complexity (including lower bounds and NP-completeness). Same as MA 473.

CSSE 474 Theory of Computation 4R-0L-4C Prerequisites: CSSE 230 and MA 315
Students study mathematical models by which to answer three questions: What is a computer? What limits exist on what problems computers can solve? What does it mean for a problem to be hard? Topics include models of computation (including Turing machines), undecidability (including the Halting Problem) and computational complexity (including NP-completeness). Same as MA 474.

CSSE 479 Cryptography 4R-0L-4C Prerequisites: CSSE 220 and MA 275
Introduction to basic ideas of modern cryptography with emphasis on mathematical background and practical implementation. Topics include: the history of cryptography and cryptanalysis, public and private key
cryptography, digital signatures, and limitations of modern cryptography. Touches upon some of the societal issues of cryptography. Same as MA 479.

CSSE 481 Web-Based Information Systems 4R-0L-4C Prerequisite: CSSE 230
In this course, students learn about several aspects of research: thinking creatively about interesting research problems, researching existing work in a chosen area, and keeping current in a field. Students are exposed to the process of research by writing a pre-proposal for a project that advances the web. Projects either develop new web-technologies or applications or investigate a topic of importance. Based on feedback received, groups of students write a research proposal which goes through a formal peer review process. Approved projects are pursued for the remainder of the quarter. Students present current research as well as give a final presentation of their group project. Selected web-technologies are introduced; in the past, these have included CGI programming and XML technologies.

CSSE 490 Special Topics in Computer Science 4C Arr Prerequisite: Permission of instructor
Selected topics of current interest. May be repeated for credit if topic is different.

CSSE 491 Directed Independent Studies 4C Arr Prerequisite: Permission of instructor and department head
Independent study of an advanced subject not included in regularly offered courses. May be repeated for credit if topic or level is different.

CSSE 492 Undergraduate Research in Computer Science 1-4C Arr Prerequisite: Permission of instructor and department head
Research under direction of a faculty member. Presentation of preliminary and final results to departmental seminar. Presentation of work at professional meetings or by publication in professional journals is strongly encouraged. May be repeated for credit if topic or level is different.

CSSE 494 Senior Thesis I 4C Arr Prerequisite: Permission of instructor and department head

CSSE 495 Senior Thesis II 4C Arr Prerequisite: CSSE 494

CSSE 496 Senior Thesis III 4C Arr Prerequisite: CSSE 495
Individual study and research of a topic in computer science or software engineering. Topic is expected to be at an advanced level. Research paper and presentation to department seminar are required.

CSSE 497 Senior Project I 4C F Prerequisites: CSSE 371 and CSSE 372

CSSE 498 Senior Project II 4C W Prerequisite: CSSE 497

CSSE 499 Senior Project III 4C S Prerequisite: CSSE 498
Group software engineering project requiring completion of a software system for an approved client. Tasks include project planning, risk analysis, use of standards, prototyping, configuration management, quality assurance, project reviews and reports, team management and organization, copyright, liability, and handling project failure.