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Abstract.In this paper, we construct a single hyperbola Γ that, along with a

straight edge and compass, allow for the trisection of any angle. Descartes con-

structed a parabola with this property in his original treatment of analytic geom-

etry. Unlike Descartes’s proof, the proof that all angles can be trisected with the

hyperbola Γ is a geometric rather than an algebraic argument.
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1 Introduction

The problem of trisecting an angle goes back to the time of the Ancient Greeks. Given an
angle θ, the Ancient Greeks wanted to be able to construct another angle that is 1/3 of the
original angle. Constructing such an angle is closely tied with the notion of showing existence
of the angle and is reflected in Euclid’s approach in the Elements. Trisecting the angle is
one of the three classic problems of Greek antiquity; two others are creating a square with
the same area as a circle and constructing a cube with twice the volume of a given cube.

The following information pertaining to the history of geometric constructions are gath-
ered from Kazarinoff’s Ruler and the Round: Classic Problems in Geometric Constructions
[4] and A. Jackter’s work done at Rutgers University titled The Problem of Angle Trisection
in Antiquity [2]. Throughout history many mathematicians have attempted to find a general
method of trisection. Many tried but only a few made notable contributions. Hippocrates
(460-380 BC) was the first person to attempt the trisection of an angle but was unsuccessful.
He contributed to the field of geometry by labeling points and lines with letters. Hippias
(460-399 BC) is credited with the first successful trisection with a curve called the quadratix.
The quadratix may have been the first curve introduced into geometry other than lines and
circles. Menaechmus (380-320 BC) introduced conic sections for the purpose of studying
the classic questions. He successfully doubled the cube and may have trisected the angle.
Menaechmus’s methods used curves shown to exist by classical methods but Hippias’s did
not. Since the cone is a solid, constructions using conic sections are called solid construc-
tions. Solid constructions for the trisection of an angle by Apollonius (250-175 BC) and
Pappus (early fourth century) are known. Many other trisection constructions were given by
the ancient Greeks that, like Hippias’s construction, were beyond the methods and curves
given in Euclid’s Elements. These include constructions by Archimedes (287-217 BC) and
Nicomedes (280-210 BC) which required the use of a twice marked straightedge.

The classic problems continued to be studied after the ancient period. Descartes (1596-
1650) used his new invention of analytic geometry to show that using one single parabola
along with a straight-edge and compass one may trisect any angle. The lack of a straight-edge
and compass construction for the trisection of the general angle was eventually explained
by Pierre Wantzel (1814-1848). He proved it impossible in his 1837 article titled (translated
from the French), Research on the Means of Knowing If a Problem of Geometry Can Be
Solved with Compass and Straight Edge.

In this paper, the authors show that using one single hyberbola, one may trisect any
angle. The construction used in this paper is a variation on the construction of Pappus.
This paper is an outgrowth of the summer SMILE program at LSU that was part of the
NSF VIGRE program. The authors wish to express their gratitude to the NSF; the organizer,
Mark Davidson; and their graduate mentor, Jose Ceniceros.
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2 Basic Constructions

Basic straight-edge and compass constructions are contained in this section. A standard
reference for these constructions is Kazarinoff’s Ruler and the Round [4]. The necessary
constructions are listed in order to provide a self-contained treatment.

Before listing constructions needed in trisecting an angle, let us introduce some notation
used in the following proofs:

• ←→XY denotes the line through points X and Y .

• XY denotes the segment from point X to point Y .

• C(X, Y ) denotes a circle with center X and radius XY .

• XY denotes the magnitude of segment XY

• ∠XY Z denotes the measure or name of an angle that is less than 180◦.

We assume the standard results of Euclidean geometry, but we identify a few items for
future reference. First we remind the reader of the generalization of Thales’s Theorem that
is often called the Inscribed Angle Theorem: An arc of a circle that is subtended by an
inscribed angle is twice the measure of the angle. Next we remind the reader of the following
construction axioms:

1. Given two points A and B, we can construct the line and the segment that includes

points A and B (i.e.
←→
AB and AB respectively).

2. Given two points A and B, we can construct the circle with center A and radius AB,
i.e., C(A,B).

Points that are intersections of constructed curves are constructed points and may be taken
as given for the purpose of further constructions. The following propositions are the basic
constructions needed in our final trisection construction.

Lemma 2.1. (Rusty Compass Theorem) Given points A, B, and C, we wish to con-
struct a circle centered at point A with radius equal to BC.

Proof. The argument may be followed in Figure 1. First, draw C(A,B) and C(B,A) and
obtain point D which forms the equilateral triangle △ABD. Then, construct C(B,C).
Extend DB past point B and call DB ∩ C(B,C), point E. Construct C(D,E). Then
extend DA past point A and label DA ∩C(D,E), point F . Construct C(A,F ). Because E
lies on C(B,C), BE = BC. Then, because △ABD is equilateral, DA = DB. Also, because
E and F lie on a circle with center D, DE = DF . Therefore, AF = BE = BC.

Proposition 2.2. (Copying an Angle) Given ∠ABC and a line l containing a point D,
we can find E on l and a point F such that ∠ABC = ∠EDF . Furthermore, F can be taken
on either side of l and E can be taken on either side of D.
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Figure 1: Rusty Compass Theorem

Proof. Using Proposition 2.1 we construct a point E on the line l with BA = DE. Construct
a circle with center D with radius length BC. Construct another circle with center E with
radius length AC. We get the point F . Therefore, △ABC ∼= △EDF by the side-side-side
congruent triangle theorem. So, ∠ABC = ∠EDF .

Proposition 2.3. (Bisecting an Angle) Given ∠ABC, there is a point D such that
∠ABD ∼= ∠DBC.

Proof. Extend AB to get the line l. Construct the circle C(B,C) and intersect with l. Call
the interesection on the A side of B, E. Construct C(E,B) and C(C,B) to get a new point
D. Then ∠ABD ∼= ∠DBC. Therefore, BD bisects ∠ABC.

Proposition 2.4. (Dropping a Perpendicular) Given a line l and a point P not on l,
we can construct a line l′ which is perpendicular to l and passes through P .

Proof. There exists a point A on l. If
←→
PA ⊥ l, we are done. If not, construct C(P,A) to get

B. Next, construct C(A,B) and C(B,A), which intersect in two points C and D. Then
←→
CD

is perpendicular to l′.

Proposition 2.5. (Raising a Perpendicular) Given a point P on a line l, then you can
construct l′ through the point P and perpendicular to the line l.

Proof. There exists a point A on line l distinct from point P . Construct C(P,A) to obtain

l ∩ C(P,A) = B. Construct C(A,B) and C(B,A) to get C. Draw
←→
PC. This line is l′.
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Proposition 2.6. (Drawing a Parallel) Given a line l and P not on l, we can construct
l′ through P and parallel to l.

Proof. Construct l′′ such that it is perpendicular to l and passes through P by Proposition
2.4. Now construct l′ through P and perpendicular to l′′ by Proposition 2.5. l′ is parallel
to l through P (Notice that the notion of parallel here is as stated in Playfair’s axiom, an
axiom that can be derived from Euclid’s first five postulates).

Given these basic constructions, we now prove that we can construct rational lengths.

Theorem 2.7. If on the Cartesian plane the points (0, 0) and (1, 0) are given, then all points
with rational coordinates are constructible.

Proof. Let A = (0, 0) and B = (1, 0). Construct
←→
AB. This is the x-axis. The y-axis is

constructed by raising a perpendicular to the x-axis at point A. If any segments of lengths
a and b are constructible, then the points (±a,±b) are constructible (combine the Rusty
Compass Theorem with Proposition 2.5, raising a perpendicular). Since we have an segment
AB of length 1, we can copy it end to end along a line to construct a segment whose length is
any desired natural number. Hence we can construct all points with integer coordinates. It
remains to construct segments of any rational length. Given n,m ∈ N, consider the triangle
with vertices A = (0, 0), C = (m, 0), and D = (m,n). Raise a perpendicular to the x-axis at
B = (1, 0) and let the intersection of the perpendicular and AD be denoted Q. By examining
the similar triangles ∆ACD and ∆ABQ, we see that the length of BQ is n

m
.

3 Hyperbolas As Conic Sections And The Hyperbola

Γ

Non-degenerate conic sections are curves that are obtained by intersecting a double cone
with a plane that does not pass through the vertex. These sections may be circles, ellipses,
hyperbolas, or parabolas. In particular, hyperbolas are created when the intersecting plane
intersects both halves of the double cone.

Unlike the constructions of circles and lines, the ancient Greeks did not give precise rules
to allow the construction of a hyperbola. They did, however, give examples of constructions.
Pappus related constructions using a property of hyperbolas that is often used as the defining
property. A hyperbola is the locus of all points for which the ratio of distances from a fixed
point, the focus, to a fixed line, the directrix, is a constant e, the eccentricity, with e > 1.
The discovery of this property is usually attributed to Apollonius. We take the following as
the postulate for constructing hyperbolas:

1. Given a point A, a line l, and a number e > 1, then we can construct a the hyperbola
with focus A, directrix l, and eccentricity e. We will only use e = 2.
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Algebraically, hyperbolas are realized as the real solution sets to quadratic equations

Ax2 + Bxy + Cy2 +Dx+ Ey + F = 0

with
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[6].
Hyperbolas whose axes are parallel to the coordinate axes are commonly expressed in

standard form.
(x− h)2

a2
− (y − k)2

b2
= ±1 (3.1)

The characteristics of a hyperbola given by Equation 3.1 with constant +1 are as follows.
The vertices are (h + a, 0) and (h − a, 0) and can be described as the points where the
distance between the two branches is the least. The transverse axis is the line segment which
connects the vertices. The center, given by coordinates (h, k), is the point on the transverse
axis that bisects the segment between the vertices. The conjugate axis is perpendicular to
the transverse axis through the center. The center of a hyperbola is also located at the
intersection of the asymptotes, which are given by equations y − k = ± b

a
(x − h). The

eccentricity is e =
√

1 + b2

a2
. There are two choices for the focus and directrix: (h + ae, k)

and x = h + a

e
or the pair (h − ae, k) and x = h − a

e
. Now that we have clearly defined

certain characteristics of hyperbolas, we can derive the hyperbola Γ needed for the purpose
of this project [3].

Theorem 3.1. Let A = (0, 0) and B = (1, 0). The set {C = (x, y) : x, y > 0 and ∠CBA =
2∠CAB} is the first quadrant branch of the hyperbola defined by

(x− 1

3
)2

(

1

3

)2
− y2

(

1√
3

)2
= 1. (3.2)

Notation 3.2. Let Γ denote the hyperbola described above by Equation 3.2.

Before proceeding to the proof, it is worth remarking that the whole hyperbola, Equation
3.2, can be described in a similar manner. Suppose lA and lB are variable lines rotating
through the points A and B. They both start as the x-axis. The line lA rotates counter
clockwise while lB rotates clockwise at twice the rate as lA. The intersection of the distinct
lines, lA ∩ lB, sweeps out the hyperbola Γ punctured at the vertices.

Proof. We derive the equation for Γ. Let C ∈ {C = (x, y) : x, y > 0 and ∠CBA = 2∠CAB}
be C = (x, y). Let D = (x, 0), r be the length of segment AC, and w be the length of
segment DB. We now have right triangles △CAD and △CDB. Let θ = ∠CAB and s be
the length of the segment CB.
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There are three cases to consider. The first is x = 1 in which case D = B and C = (1, 1).
The second is the case x < 1. This case is needed for the trisection construction and we
prove it below. The third case is x > 1, is not need for the trisection construction and the
proof is very similar to x < 1. In comparison to the case of x < 1, one would only need to
note that the sine of 180◦ − 2θ is sin(2θ) to get started, x− w = 1, and be careful of signs.
We will not go into the details and concentrate on x < 1. We continue with the case x < 1.
See Figure 3 where ψ = 2θ. Note that implies 2θ < 90◦. In analyzing the triangles, we have
the following:

1 = x+ w (3.3)

y = r sin θ (3.4)

x = r cos θ (3.5)

s =
r sin θ

sin 2θ
. (3.6)

By the Pythagorean Theorem, we find the following relationship for w, w2 = s2− y2. By
substituting y and s values from equations (3.4) and (3.6),



Page 190 RHIT Undergrad. Math. J., Vol. 14, No. 1

w2 =
(r sin θ

sin 2θ

)2

− (r sin θ)2 (3.7)

=
r2 sin 2θ

sin 22θ
− r2 sin 2θ (3.8)

w = r sin θ

√

( 1

sin 22θ
− 1

)

= r sin θ
√
csc 22θ − 1

= r sin θ
√
cot 22θ

= r sin θ cot 2θ

= r sin θ
(cos 2θ

sin 2θ

)

= r sin θ
( cos 2θ

2 sin θ cos θ

)

=
r cos 2θ

2 cos θ

=
r(cos 2θ − sin 2θ)

2 cos θ

=
r cos 2θ

2 cos θ
− r sin 2θ

2 cos θ

w =
r cos θ

2
− r sin 2θ

2 cos θ
(3.9)

Using Equations (3.3), (3.5), and (3.9) , we obtain

1 = r cos θ +
r cos θ

2
− r sin2 θ

2 cos θ

Multiplying both sides of the equation by 2r cos θ,

2r2 cos2 θ + r2 cos2 θ − r2 sin2 = 2r cos θ.

Using substitution with equations (3.2) and (3.3),

2x2 + x2 − y2 = 2x.

Completing the square,

3x2 − 2x− y2 = 0

x2 − 2

3
x− 1

3
y2 = 0

(x− 1

3
)2 − y2

3
=

1

9
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Putting this equation in standard form, we arrive at the curve,

(x− 1

3
)2

(

1

3

)2
− y2

(

1√
3

)2
= 1.

We have derived Γ.
Suppose that C is any point on the first quadrant branch of Γ, A = (0, 0), and B = (1, 0).

Let θ = ∠CAB and ψ = ∠CBA We wish to show that ψ = 2θ. Again, we show case 2, i.e.,
x < 1. For this case, both angles are acute and ψ = 2θ if and only if sin(ψ) = 2 sin(θ) cos(θ).
Using that the equation for Γ, i.e., y2 = 3x2 − 2x, and following Figure 3, we have

2 sin(θ) cos(θ) = 2
y

√

x2 + y2

x
√

x2 + y2

= 2
xy

x2 + y2

= 2
xy

4x2 − 2x

=
y

2x− 1

=
y√

4x2 − 4x+ 1

=
y√

4x2 − 4x+ 1

=
y

√

(x− 1)2 + 3x2 − 2x

=
y

√

(x− 1)2 + y2

= sin(ψ)

Theorem 3.3. The hyperbola Γ has eccentricity e = 2 and the vertices are (2
3
, 0) and (0, 0).

One focus-directrix pair is given by (1, 0) and x = 1

2
and the second by (−1

3
, 0) and x = 1

6
.

The asymptotes are given by the equations, y = ±
√
3(x− 1

3
).

Proof. From the equation for Γ given in Theorem 3.1, we see that h = 1

3
, k = 0, a = 1

3
, and

b = 1√
3
. The results follow by applying the formulas given after Equation 3.1.

Theorem 3.4. Given two points, then we may construct a coordinate system and the hy-
perbola Γ.

We will construct Γ and a coordinate system around it. Any further coordinate analysis
will be done with respect to these Cartesian coordinates.
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Proof. Label the two known points A and B and give them the coordinates A = (0, 0)
and B = (1, 0). Note that we have now set a scale where the distance between A and

B is 1. Construct
←→
AB. This is the x-axis. Raise a perpendicular to the x-axis at A by

Proposition 2.5. This is the y-axis. Next construct the point (1
3
, 0) using Theorem 2.7, and

raise a perpendicular to the x-axis by Proposition 2.5. This line is the directrix. Since the
directrix and focus have been constructed and the eccentricity is 2, the hyperbola Γ may be
constructed.

4 Trisecting An Angle Using The Hyperbola Γ

Theorem 4.1. Any angle may be trisected with a straight-edge, compass, and the hyperbola
Γ.

Our argument is based on an argument presented by Pappus given in Sir Thomas Heath’s
A History of Greek Mathematics [1]. You may find it helpful to reference the figure below
titled Trisection Construction while reading the following proof.

Proof. Starting with A = (0, 0), B = (1, 0), and an angle θ with measure less than 180◦,
we trisect θ. If one wishes to trisect an angle with measure greater than 180◦, then one can
remove a multiples of 90◦ first and separately trisect a 90◦ angle.

1. By Theorem 3.4, construct Γ with right branch’s focus at point B.

2. Using Theorem 2.7, construct point D at (1
2
, 0).

3. Using Proposition 2.4, construct l perpendicular to AB at point D.

4. Bisect angle θ using Proposition 2.3 to obtain an angle with measure θ

2
.

5. Let E have a negative y coordinate on l, then using Proposition 2.2 copy θ

2
measured

clockwise from l having vertex at point E. Construct point F such that ∠DEF = θ

2
.

6. Construct l′ ‖ ←→EF through point B using Proposition 2.6.

7. Obtain point O such that ∠DOB = θ

2
(i.e. point O = l′ ∩ l).

8. Construct BO.

9. Using Proposition 2.2, reflect ∠DOB about line l such that it creates ∠AOD.

10. Construct AO yielding isosceles triangle △AOB.

11. Construct C(O,A).

12. Obtain the point P from the intersection of the arc
⌢

AB and Γ.
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13. Construct AP and PB giving us a triangle such that ∠PBA = 2∠PAB.

14. Construct OP .

Our claim is that OP trisects ∠AOB. Before we prove this claim, we will rename angles
so that ∠PAB = φ, ∠AOP = α and ∠POB = ψ. Notice that α+ ψ = θ. By Theorem 3.1,

Γ, it holds that ∠PBA = 2φ. Note that φ and ψ subtend the same arc,
⌢

PB. Since φ is an
inscribed angle and ψ is a central angle, we have 2φ = ψ by the Inscribed Angle Theorem.

Similarly, the angles subtending the arc
⌢

AP show that φ = α. Therefore ψ = 2α. Notice
that ∠AOB = α+ψ = α+2α = 3α. Hence, OP trisects ∠AOB and separately trisect each
90◦ angle.

Figure 2: Trisection Construction
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5 Further investigation

One direction for future investigation is to study curves that allow for sectioning an angle
into a larger number of equal angles than three, i.e., sectioning an angle into n + 1 equal
angles for n > 2. If A = (0, 0) and B = (1, 0), then the set Γn = {C = (x, y) : x, y >
0 and ∠CBA = n∠CAB} is a component of

(1− x)
n

∑

k=0

(

n

k

)

xkyn−k cos

(

(n− k)π
2

)

− y
n

∑

k=0

(

n

k

)

xkyn−k sin

(

(n− k)π
2

)

= 0. (5.1)

The sine and cosine terms in Equation 5.1 are 0, 1, or − 1 varying with the remainder of
n − k divided by 4. The polynomial equation Equation 5.1 is derived in same manner as
Equation 3.2 in Theorem 3.1 except that the double angle formulas are replaced by n-th
angle formulas [5]. Minor alterations to the proof of Theorem 4.1 show that Γn along with
the use of a straight edge and compass allow the n+1 sectioning of a angle. One can examine
the algebraic properties of the curves Γn.
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