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Abstract

We reduce the Fibonacci sequence mod m for a natural number m,
and denote it by F (mod m). We are going to introduce the properties
of the period and distribution of F (mod m). That is, how frequently
each residue is expected to appear within a single period. These are
well known themes of the research of the Fibonacci sequence, and
many remarkable facts have been discovered.
After that we are going to study the properties of period and distri-
bution of a Fibonacci-like sequence that the authors introduced in [4].
This Fibonacci-like sequence also has many interesting properties, and
the authors could prove an interesting theorem in this article. Some
of properties are very difficult to prove, and hence we are going to
present some predictions and calculations by computers.

1 Introduction.

The Fibonacci sequence has a lot of remarkable properties. One of them
is the fact that we get a periodic sequence when we reduce the Fibonacci
sequence mod m for a natural number m, and many people have studied the
period of the Fibonacci sequences. see [1]
In [2] [3], [4] and [5] the authors have studied Fibonacci-like sequences. It
is a proper theme to study the periods of Fibonacci-like sequences, and the
formulas in [4] can be very useful tools in the research.
The content of Section 2 is well known fact, but the contents of Section 3
and 4 are works of the authors.
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2 The Periods of the Fibonacci Sequence.

Definition 2.1. We are going to define the Fibonacci sequence.
We define F (0) = 0, F (1) = F (2) = 1 and for natural number n such that
n ≥ 2

F (n) = F (n − 1) + F (n − 2).

Note that here we define F (n) for non-negative number n. In this article
it is convenient to have F (0) = 0.

We denote Fibonacci sequence modulo m by F ( mod m) for a natural
number m.

Example 2.1. We are going to study F (mod 10 ) for n = 1, 2, 3, ..., 62.
F (n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,..., and hence F (mod 10 ) =
1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8,5,3,8,1,9,0,9,9,8,7,5,2,7,9,6,
5,1,6,7,3,0,3,3,6,9,5,4,9,3,2,5,7,2,9,1,0,1,1.
Both of the 61th and 62th terms are 1, and hence next terms should be 2, 3,
5, 8, .... Therefore it is easy to see that it has a period of 60.

Theorem 1. Let an = F ( mod m) , then there exists a positive integer s
such that (as,as+1) = (1, 1). In particular F ( mod m) has a period.

Proof. Since 0 ≤ an < m, there are only m2 possible pairs of residues, and
hence there must be natural numbers s and t such that s < t and (as, as+1) =
(at, at+1). Therefore F (mod m) is 1, 1, ...,as, as+1,..., at, at+1, ..., where
we have at = as, at+1 = as+1. By the property of F (mod m) any pair will
completely determine a sequence both forward and backward. For example
by the fact that at−1 + at = at+1 and as−1 + as = as+1 (mod m) we have
at−1 = at+1 − at, as−1 = as+1 − as (mod m) and at−1 = as−1. By going
backward in this way we can find the smallest natural number u such that
u < t and au = 1, au+1 = 1. Therefore F (mod m) must has the period, and
i if we denote this period by k(m), then k(m) = u − 1. Clearly k(m) < m2.

Theorem 2. F (mod 2n) has a period of 3 · 2n−1 for any natural number n.

Proof. This is a well known property of the Fibonacci sequence. See Lemma
1 and the remark after it in [1]. You can also find this fact in some textbooks
on Fibonacci sequences.
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Example 2.2. We are going to see an example of the formula presented in
Theorem 2. In this example we are going to study F ( mod 25 = 32).
{F (s) (mod 32), s = 1, 2, 3, ...48}
= {1, 1, 2, 3, 5, 8, 13, 21, 2, 23, 25, 16, 9, 25, 2, 27, 29, 24, 21, 13, 2, 15,
17, 0, 17, 17, 2, 19, 21, 8, 29, 5, 2, 7, 9, 16, 25, 9, 2, 11, 13, 24, 5, 29, 2,
31, 1, 0 }.
{F (s) (mod 32), s = 49, 50, 51, ...96}
= {1, 1, 2, 3, 5, 8, 13, 21, 2, 23, 25, 16, 9, 25, 2, 27, 29, 24, 21, 13, 2, 15,
17, 0, 17, 17, 2, 19, 21, 8, 29, 5, 2, 7, 9, 16, 25, 9, 2, 11, 13, 24, 5, 29, 2,
31, 1, 0 } .
It is clear that F (s) (mod 32) has a period of 48.

There are many interesting facts about the period of the Fibonacci se-
quence. For example see Graph4.1 and Graph4.2 in Section 4.

3 The Periods of the Fibonacci Like Sequence.

Now we are going to study periods of Fibonacci-like sequences that the au-
thors studied in [2] [3], [4] and [5].

First we define the Fibonacci-like sequence.

Definition 3.1. Let p be a fixed natural number with p ≥ 2. We define
Bp(0) = 0, Bp(1) = Bp(2) = 1 and for natural number n such that n ≥ 2

Bp(n) = Bp(n − 1) +

{
Bp(n − 2) + 1, if n = 1 ( mod p).

Bp(n − 2), if n ̸= 1 ( mod p).

There are some very interesting relationships between the sequence Bp(n)
and F (n).

Theorem 3. Let p = 4q for a natural number q. Here we denote Bp(n) by
f(n). Note that by Definition 3.1 and 2.1 we have F (0) = f(0) = 0.
Then f(n) satisfies the following equations for any natural number t.
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

f(4qt) = F (2qt)F (2qt+2q)
F (2q)

,

f(4qt + 1) = F (2qt+1)F (2qt+2q)
F (2q)

,

f(4qt + 2) = F (2qt+2)F (2qt+2q)
F (2q)

,
...

f(4qt + 4q − 1) = F (2qt+4q−1)F (2qt+2q)
F (2q)

.

For a proof see [4].

Theorem 4. Let m be a natural number such that m ≥ 2. Here we denote
B2m(s) by f(s).
Then f(n) satisfies the following equations for any natural number t.

f(2mt) = F (2m−1t)F (2m−1t+2m−1)
F (2m−1)

,

f(2mt + 1) = F (2m−1t+1)F (2m−1t+2m−1)
F (2m−1)

,

f(2mt + 2) = F (2m−1t+2)F (2m−1t+2m−1)
F (2m−1)

,
...

f(2mt + 2m − 1) = F (2m−1t+2m−1)F (2m−1t+2m−1)
F (2m−1)

.

Proof. Let 4q = 2m for natural number m with m ≥ 2, then this theorem is
direct from Theorem 3 .

Lemma 3.1. F (m) is even if and only if m is a multiple of 3.

Proof. Since F (n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,..., F (mod 2 ) =
1,1,0,1,1,0,1,1,0, .... It is clear that the period of the F (mod 2) is 3, and
F (m) is even if and only if m is a multiple of 3.

Theorem 5. Let an = Bp (mod m) for natural numbers p and m. Then
there exists the smallest natural number s such that (aps+1,aps+2) = (1, 1).
In particular an has a period of the length of p× s. We denote the period by
kp(m).

Proof. Since 0 ≤ an < n, there are only m2 possible pairs of residues,
and hence there must be natural numbers s and t such that s < t and
(aps+1, aps+2) = (apt+1, apt+2).

Therefore Bp (mod m) is 1, 1, ..., aps+1, aps+2,..., apt+1, apt+2, where
apt+1 = aps+1 and apt+2 = aps+2. By the property of Fibonacci-like sequence
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any pair will completely determine a sequence both forward and backward. For
example by the property of Fibonacci-like sequence apt + apt+1 = apt+2 and
aps +aps+1 = aps+2, and hence we have apt = apt+2−apt+1, aps = aps+2−aps+1

and apt = aps.
Similarly by the property of the Fibonacci-like sequence apt−1 +apt +1 = apt+1

and aps−1 + aps + 1 = aps+1, and hence we have apt−1 = apt+1 − apt − 1,
aps−1 = aps+1 − aps − 1 and apt−1 = aps−1.
By going backward in this way we can find the smallest natural number u
such that u < t, apu+1 = 1 and apu+2 = 1. Therefore Bp ( mod m) must has
the period. If we denote the period by kp(m), then kp(m) = u × p. Clearly
kp(m) < p × m2.

Remark 3.1. By Theorem 5 the period of Bp is p×s when Bps+1 = Bps+2 = 1
(mod m). Then by the property of Bp we have Bps + Bps+1 = Bps+2 and
Bps−1 + Bps + 1 = Bps+1, and hence Bps−1 = Bps = 0 (mod m).

Theorem 6. For any natural number k
F (3 · 2k) = 2k+2 (mod 2k+4).

Proof. For a proof see Lemma 1 of [1]. In this Lemma 1 the author of the
article [1] proved it with the condition that k ≥ 2, but k can be 1, since
F (3 · 21) = F (6) = 8 = 23.

Theorem 7. Let n,m be natural numbers such that n > m and m ≥ 2. Here
we denote B2m(s) by f(s).
Then the period of f(s) (mod 2n) is 3 · 2n−1.

Proof. Let t = 3 · 2n−m−1. Then 2mt = 3 · 2n−1 and 2m−1t = 3 · 2n−2, and by
the first equation of Theorem 4 we have

f(3 · 2n−1) =
F (3 · 2n−2)F (3 · 2n−2 + 2m−1)

F (2m−1)
. (3.1)

Let t = 3 · 2n−m−1 − 1, then we have 2mt + 2m = 3 · 2n−1, 2m−1t + 2m =
3 · 2n−2 + 2m−1 and 2m−1t + 2m−1 = 3 · 2n−2. Therefore by the last equation
of Theorem 4 we have

f(3 · 2n−1 − 1) =
F (3 · 2n−2 + 2m−1 − 1)F (3 · 2n−2)

F (2m−1)
. (3.2)
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By Theorem 6 we have

F (3 · 2n−2) = 2n (mod 2n+2). (3.3)

By Lemma 3.1 F (2m−1) is an odd number, and hence by (3.1), (3.2) and (3.3)
we know that

f(3 · 2n−1) = f(3 · 2n−1 − 1) = 0 (mod 2n). (3.4)

By (3.4), Definition 3.1 and the fact that 3 · 2n−1 is a multiple of p = 2m we
have

f(3 · 2n−1 + 1) = f(3 · 2n−1 − 1) + f(3 · 2n−1) + 1 = 1 (mod 2n). (3.5)

Similarly we can get

f(3 · 2n−1 + 2) = f(3 · 2n−1) + f(3 · 2n−1 + 1) = 1 (mod 2n), (3.6)

and by (3.4), (3.5) and (3.6) the period kp(2n) is a factor of 3 · 2n−1 for
p = 2m.
Next we are going to prove that kp(2n) = 3 · 2n−1.
A factor of 3·2n−1 is 3·2n−1 itself or 3·2k with k ≤ n−2 or 2k with k ≤ n−1.
By Theorem 5 the period of f is a multiple of 2m.
Therefore we can suppose that m ≤ k.
Let t = 2k−m, then by the first equation of Theorem 4

f(2k) =
F (2k−1)F (2k−1 + 2m−1)

F (2m−1)
, (3.7)

and hence
f(2k) > 0 (mod 2n), (3.8)

since by Lemma 3.1 F (2k−1), F (2m−1) and F (2k−1 +2m−1) are odd numbers.
By Remark 3.1 kp(2n) ̸= 2k.
Next we are going to prove that kp(2n) ̸= 3 · 2k with (k ≤ n− 2). By Remark
3.1 it is sufficient to prove that f(3 · 2k) > 0 (mod 2n) for m ≤ k ≤ n − 2.

Let t = 3 · 2k−m−1. Then by the first equation of Theorem 4

f(3 · 2k) =
F (3 · 2k−1)F (3 · 2k−1 + 2m−1)

F (2m−1)
. (3.9)
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By Theorem 6 we have

F (3 · 2k−1) = 2k+1 (mod 2k+3). (3.10)

[1] If n ≤ k + 3, then by the assumption that k ≤ n− 2 we have k + 1 < n ≤
k + 3, and hence by (3.10)

F (3 · 2k−1) = 2k+1 > 0 (mod 2n). (3.11)

By Remark 3.1 3 · 2k−1 is not the period kp(2n).
[2] Next we suppose that k + 3 < n. By (3.10) there exists a natural number
K such

F (3 · 2k−1) = 2k+1 + K · 2k+3. (3.12)

Then there exists a sequence of natural numbers a0, a1, ... such that at = 0 or
1 and K = a0 + a12

1 + a22
2 + a32

3 + .... Then by (3.12) we have
F (3 · 2k−1) = 2k+1 + a02

k+3 + a12
k+4 + a22

k+5 + a32
k+6 + ...., and hence

F (3 · 2k−1) > 0 (mod 2n). (3.13)

By Remark 3.1 3 · 2k−1 is not the period kp(2n).

4 Some Interesting Graphs and Predictions

about the periods of Fibonacci and Fibonacci-

like sequences.

The periods of Fibonacci sequences and Fibonacci-like sequences is a difficult
theme to study. Although it is fairly easy to make many predictions, it is
often the case that proving them are very difficult.

Here we are going to introduce many predictions and graphs that are very
interesting, however, the authors think that it will be difficult to prove them
generally by mathematical proof.

Throughout this section we use the computer algebra system Mathemat-
ica to draw graphs and make predictions. Although Mathematica is a very
powerful tool in our research, you can understand the contents of this section
without the knowledge of Mathematica.

Many people have studied the periods of the Fibonacci sequence, but we
believe that we were the first people who made Graph 4.1 and Graph 4.2.

We used the Mathematica function in 5.1 to make Graph 4.1 and 4.2.
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Example 4.1. Let k(m) be the period of F ( mod m) and Graph 4.1 shows
the list {(m, k(m)), m = 1,2,...,10000 }.

Graph 4.1.

There are many lines in Graph 4.1, and we are going to study the slopes
of the lines. We made the list {k(m)/m for m = 1, 2, 3, ..., 10000}, and
got Graph 4.2. From Graph 4.2 we can see that the slopes of the lines in
Graph 4.1 are 3, 2, 1.5, 1, 0.5, etc. This fact indicates that for many natural
numbers m we have k(m) = 3m, 2m, 1.5m, m, 0.5m.

Graph 4.2.

The Graphs 4.1 and 4.2 are very interesting, and hence we are going to
make the same kind of graphs for our Fibonacci-like sequence. We used the
Mathematica function in 5.2 to make Graph 4.3.

Example 4.2. Let k4(m) be the period of B4(s) (mod m) and the following
graph shows the list {(m, k4(m)), m = 1,2,...,10000 }.
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Graph 4.3.

The similarities between of Graph 4.1 and Graph 4.3 are obvious. This
implies the existence of many simple relations between k(x) and k4(x).

Next we are going to study the distribution of residues of F (mod m).
That is, how frequently each residue is expected to appear within a single
period. This is a well known topic to study.

Example 4.3. The period of the sequence F (mod 25) is 100, and the list of
first 100 terms is { 1, 1, 2, 3, 5, 8, 13, 21, 9, 5, 14, 19, 8, 2, 10, 12, 22, 9,
6, 15, 21, 11, 7, 18, 0, 18, 18, 11, 4, 15, 19, 9, 3, 12, 15, 2, 17, 19, 11, 5,
16, 21, 12, 8, 20, 3, 23, 1, 24, 0, 24, 24, 23, 22, 20, 17, 12, 4, 16, 20, 11,
6, 17, 23, 15, 13, 3, 16, 19, 10, 4, 14, 18, 7, 0, 7, 7, 14, 21, 10, 6, 16, 22,
13, 10, 23, 8, 6, 14, 20, 9, 4, 13, 17, 5, 22, 2, 24, 1, 0 }.
In this list the number 0 appears 4 times, the number 1 appears 4 times, ...,
the number 24 appears 4 times. The following Chart shows how frequently
each residue 0,1,...24 is expected to appear within a single period of 100.
residue 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

frequency 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

The distribution of residues of F (mod m) is a very interesting topic, so
we are going to the same thing for Fibonacci-like sequences.

Example 4.4. The period of the sequence B2(mod 25) is 60, and the list of
first 60 terms is {1, 1, 3, 4, 8, 2, 1, 3, 5, 8, 4, 2, 7, 9, 7, 6, 4, 0, 5, 5, 1, 6,
8, 4, 3, 7, 1, 8, 0, 8, 9, 7, 7, 4, 2, 6, 9, 5, 5, 0, 6, 6, 3, 9, 3, 2, 6, 8, 5, 3,
9, 2, 2, 4, 7, 1, 9, 0, 0, 0}.
In this list the number 0 appears 6 times, the number 1 appears 6 times, ...,
the number 9 appears 6 times. The following Chart shows how frequently
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each residue 0,1,...9 is expected to appear within a single period of 60.
residue 0 1 2 3 4 5 6 7 8 9

frequency 6 6 6 6 6 6 6 6 6 6

Example 4.5. The period of the sequence B3(mod 5) is 60, and the list of
first 60 terms is { 1, 1, 2, 4, 1, 0, 2, 2, 4, 2, 1, 3, 0, 3, 3, 2, 0, 2, 3, 0, 3,
4, 2, 1, 4, 0, 4, 0, 4, 4, 4, 3, 2, 1, 3, 4, 3, 2, 0, 3, 3, 1, 0, 1, 1, 3, 4, 2, 2,
4, 1, 1, 2, 3, 1, 4, 0, 0, 0, 0}.
In this list the number 0 appears 12 times, the number 1 appears 12 times,
..., the number 4 appears 12 times. The following Chart shows how frequently
each residue 0,1,2,3,4 is expected to appear 12 times within a single period of
60.

residue 0 1 2 3 4

frequency 12 12 12 12 12

Example 4.4 and Example 4.5 are special cases of the following prediction.

Prediction 4.1. In the following cases we have the same number of frequency
of each number in the distribution of residues.
(1) B2 (mod 2 × 5s) for non negative integer s.
(2) Bp (mod 5s) for non negative integer s and any prime number p with
p ̸= 5.

5 Computer programs the authors used in

their research

Here we are going to present programs of Mathematica, Java, C, Python.
Readers are encouranged to use these programs to do calculations and dis-
cover new formulas and theorems.

Example 5.1. This is a Mathematica function to calculate the periods of the
Fibonacci sequence (mod x) for a natural number x.
findloopcom = Compile[{{x, Integer}},
Block[{k = 1, s = x, a = 1, b = 2},
If [x == 1, 1, While[!{a, b} == {1, 1}, {a, b} = {b,Mod[a + b, s]};
k = k + 1]]; k]];
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Let’s explain about the algorithm used in the above function. Here we denote
by g[n] the sequence F (modm). If m = 1, k(1) = findloop[1] = 1. If m > 1,
then the function findloop[m] continues to produce g[2] = 1, g[3], g[4], ...until
there appears a natural number h such that g[h] = 1 and g[h + 1] = 1. Then
k(m) = h − 1.

Example 5.2. This is a Mathematica function to calculate the periods of
Fibonacci-like sequence Bp(s) (mod x) for a natural number x.
By fp[x, p] we can calculate the period.
fp =
Compile[{{x, Integer}, {p, Integer}} ,
Block[{k = 0, s = x, a = 1, b = 1, aa = 1, bb = 1, cc = 2},
Do[{aa, bb, cc} = {bb, cc,Mod[cc + bb, s]}, {ns, 1, p − 2}];
{a, b} = {Mod[1 + aa ∗ a + bb ∗ b, s],Mod[1 + bb ∗ a + cc ∗ b, s]};
If [x == 1, 1,While[!{a, b} == {1, 1},
{a, b} = {Mod[1 + aa ∗ a + bb ∗ b, s],Mod[1 + bb ∗ a + cc ∗ b, s]};
k = k + 1]]; p(k + 1)]]

Example 5.3. This is a C-program to present the distribution of Bp (mod m).
We use P and M for p and m in Bp (mod m).

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* args[]){

int P, M;

int n, cur, pre, tmp, i;

int *cnt;

P = atoi(args[1]);

M = atoi(args[2]);

n = 3;

cur = pre = 1;

cnt = (int *)calloc(M, sizeof(int));

while(1){

tmp = cur;

cur += pre;

pre = tmp;
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if(n % P == 1) cur += 1;

cur %= M;

cnt[cur]++;

if(cur == 1 && pre == 1 && (n - 1) % P == 1) break;

n++;

}

Example 5.4. This is a Java-program to present the distribution of Bp

(mod m).
We use P and M for p and m in Bp (mod m).

class Fibonacci{

public static void main(String[] args){

int P, M;

int n, cur, pre, tmp;

int[] cnt;

P = Integer.parseInt(args[0]);

M = Integer.parseInt(args[1]);

n = 3;

cur = pre = 1;

cnt = new int[M];

while(true){

tmp = cur;

cur += pre;

pre = tmp;

if(n % P == 1) cur++;

cur %= M;

cnt[cur]++;

if(cur == 1 && pre == 1 && (n - 1) % P == 1)

break;

n++;

}

System.out.println("Loop:" + (n - 2));

System.out.print("[");

for(int i=0; i<M-1; i++) System.out.print(cnt[i] + ", ");

System.out.println(cnt[M-1] + "]");
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}

}

Example 5.5. This is a Python program to present the distribution of Bp

(mod m).
We use P and M for p and m in Bp (mod m).

import sys

def fp(P, M):

n = 3

pre = 1

cur = 1

cnt = [0] * M

while True:

pre, cur = cur, cur + pre

if n % P == 1: cur += 1

cur %= M

cnt[cur] += 1

if cur == 1 and pre == 1 and (n - 1) % P == 1:

break

n += 1

print "Loop:%d"%(n - 2)

print cnt

if __name__ == "__main__":

P = int(sys.argv[1])

M = int(sys.argv[2])

fp(P, M)

6 An Interesting Prediction.

We are going to study graphs of distributions of residues. Here we let m = 5.
In Graph 6.1 we let p = 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,21, and in Graph 6.2 we let p = 22,23,24,25,26,27,28,29,30,31,
32,33,34,35,36,37,38,39,40,41.
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Graph 6.1.

residue 0 1 2 3 4

frequency 4 4 4 4 4

residue 0 1 2 3 4

frequency 12 12 12 12 12

residue 0 1 2 3 4

frequency 7 4 1 3 5

residue 0 1 2 3 4

frequency 8 3 2 4 3

residue 0 1 2 3 4

frequency 12 12 12 12 12

residue 0 1 2 3 4

frequency 28 28 28 28 28

residue 0 1 2 3 4

frequency 15 8 6 9 2

residue 0 1 2 3 4

frequency 36 36 36 36 36

residue 0 1 2 3 4

frequency 12 3 1 3 1

residue 0 1 2 3 4

frequency 44 44 44 44 44

residue 0 1 2 3 4

frequency 21 14 7 10 8

residue 0 1 2 3 4

frequency 52 52 52 52 52

residue 0 1 2 3 4

frequency 28 28 28 28 28

residue 0 1 2 3 4

frequency 24 9 8 10 9

residue 0 1 2 3 4

frequency 29 11 13 15 12

residue 0 1 2 3 4

frequency 68 68 68 68 68

residue 0 1 2 3 4

frequency 36 36 36 36 36

residue 0 1 2 3 4

frequency 76 76 76 76 76

residue 0 1 2 3 4

frequency 36 16 16 16 16

residue 0 1 2 3 4

frequency 84 84 84 84 84 Graph 6.2.

residue 0 1 2 3 4

frequency 4 4 4 4 4

residue 0 1 2 3 4

frequency 12 12 12 12 12

residue 0 1 2 3 4

frequency 7 4 1 3 5

residue 0 1 2 3 4

frequency 8 3 2 4 3

residue 0 1 2 3 4

frequency 12 12 12 12 12

residue 0 1 2 3 4

frequency 28 28 28 28 28

residue 0 1 2 3 4

frequency 15 8 6 9 2

residue 0 1 2 3 4

frequency 36 36 36 36 36

residue 0 1 2 3 4

frequency 12 3 1 3 1

residue 0 1 2 3 4

frequency 44 44 44 44 44

residue 0 1 2 3 4

frequency 21 14 7 10 8

residue 0 1 2 3 4

frequency 52 52 52 52 52

residue 0 1 2 3 4

frequency 28 28 28 28 28

residue 0 1 2 3 4

frequency 24 9 8 10 9

residue 0 1 2 3 4

frequency 29 11 13 15 12

residue 0 1 2 3 4

frequency 68 68 68 68 68

residue 0 1 2 3 4

frequency 36 36 36 36 36

residue 0 1 2 3 4

frequency 76 76 76 76 76

residue 0 1 2 3 4

frequency 36 16 16 16 16

residue 0 1 2 3 4

frequency 84 84 84 84 84
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Example 6.1. From Graph 6.1 we know that for p = 2,3,6,7,9,11,13,14,17,18,19,21
we have the same number of frequency of each number in the distribution of
residues. From Graph 6.2 we know that for p = 22,23,26,27,29, 31,33,34,37,38,39,41
we have the same situation. If we compare these two sequences, we can dis-
cover many interesting things.
For example, if we add 20 to each number in the first sequence, we get all
the numbers in the second sequence.
We are going to calculate kp(5)

5p
. For example, if we let p = 2, then the de-

stribution is Graph 6.3.

Graph 6.3.

residue 0 1 2 3 4

frequency 4 4 4 4 4

From this graph we know that the period is 5 × 4 = 20. Note that the
length of the period is equal to the number of all the numbers that appear in
one period. If we divide 20 by 5p = 10, then we get 2. In this way we can
calculate kp(5)

5p
for various values of p.

If we calculate kp(5)
5p

for p = 2,3,6,7,9,11,13,14,17,18,19,21, then we get
2, 4, 2, 4, 4, 4, 4, 2, 4, 2, 4, 4.
If we calculate kp(5)

5p
for p = 22,23,26,27,29, 31,33,34,37,38,39,41, then we

get 2, 4, 2, 4, 4, 4, 4, 2, 4, 2, 4, 4.
It seems that the sequence { kp(5)

5p
, p = 1,2,3,..., } has a period of the length

of 20. This is very interesting prediction.

If you use the computer programs in this article, you may be able to
discover many new facts about the Fibonacci-like sequences.
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