Formulas for Computable and Noncomputable
Functions

Samuel Alexander
The University of Arizona

With supervision of Dr. Ksenija Simic
The University of Arizona

ABSTRACT

We explore the problem of writing explicit formulas for integer func-
tions. We demonstrate that this can be done using elementary ma-
chinery for a wide class of functions. Constructive methods are given
for obtaining formulas for computable functions and for functions in
the arithmetical hierarchy. We include a short background on com-
putability theory.

1 Introduction

A common problem in the amateur literature reads: “find a formula for (some
function).” We attack this problem in very broad generality by solving it when
the function in question is computable or within the arithmetical hierarchy.
But the first step toward solving this problem is deciding what precisely
is meant by a formula. There is no standard definition for a formula, so be-
fore we can proceed to the problem, we must make quite clear what we mean.
Loosely speaking, we allow formulas using standard arithmetic, finite sums, the
Kronecker § function (a very simple function defined below), and infinite series.
First, we offer some background on computability theory.

2 Background

Throughout math and science, it is common to find concepts and notions that
are useful, or indeed indispensable, but which are not really well understood for
a long time. Eventually as these notions see more use, they are formulated with
greater precision, and it is precisely at this point when huge leaps of progress
are often made. One concept which has been absolutely fundamental since
ancient times is the algorithm: a set of instructions explaining how some task
can be accomplished. And yet, as universal and powerful as this notion is, it was

not made formal until the first half of the 20t century. Thus, we should not be
surprised that when the notion finally was set on firm ground, the breakthroughs
that ensued were stunning and numerous.

Since its conception at the hands of mathematicians like Alan Turing and
Alonzo Church, computability theory— essentially, the abstract study of algo-
rithms and effectively computable tasks—has blossomed into a strong field whose
applicability throughout diverse branches of mathematics is paralleled only by
its own deep beauty.

What set all this in motion was the revelation that the many seemingly
disparate attempts to define an effectively computable function— that is, a func-
tion which, informally, can be calculated using an algorithm— were in fact all
precisely equivalent. For example, Turing suggested the popular Turing ma-
chine definition, where computable functions are those which can, in a formal
sense, be programmed into a mathematical model of a computer— a Turing ma-
chine. Contrast this with G6del’s recursive functions (defined below), a very
formal and abstract construction that bears no outward resemblance to Turing
computable functions; and contrast either of these with Church’s A-computable
functions, essentially functions that can be given by some very specific formulas
(for Turing computability and recursive functions, see [2], for A-calculus see [1]).
Astonishingly, these separate attempts to contrive definitions of effectively com-
putable functions, turn out to give exactly the same functions! That is to say, a
function is Turing machine computable if and only if it is recursive if and only
if it is A-computable. This allowed Church and Turing to lay the foundation
of computability theory with the Church-Turing Thesis, which basically states:
the various attempts to define effectively computable functions are successful,
that is to say, functions that are effectively computable are identical to those
given by the various attempts to define computable functions.

It must be emphasized that the Church-Turing thesis is not a formal math-
ematical statement. It is an informal statement about “effectively computable
functions”. The Church-Turing thesis cannot be proved or disproved, because
“effectively computable” is itself not a formal mathematical term, but rather
an informal word for those functions for which an algorithm exists. It is more
accurate to call the thesis a philosophical statement than a mathematical state-
ment. Its use in mathematics is not formal: rather, it is a kind of labor-saving
device, as the following example shows.

Example: Suppose we want to prove that the function which gives the nth
prime number is computable, in the sense of some given model of computation,
say Turing machine computable. To do so formally requires almost no ingenuity
(at least once the basic techniques of programming with Turing machines are
understood), but involves quite a lot of tedious busywork. On the other hand,
informally we know the nth prime number function can be computed via an al-
gorithm, for example the Sieve of Eratosthenes; the Church-Turing thesis states,
informally, that the various definitions of computable functions— including Tur-
ing’s definition— include precisely the functions which are effectively computable.
Thus, we can write: “The nth prime number can be calculated by an unam-

biguous algorithm in a finite amount of time, so by the Church-Turing thesis,
f is Turing computable”. This is not a rigorous mathematical proof, but it
is accepted as proof in the literature, with the implicit understanding that if
a critic would challenge it, it would be only a simple (but tedious and long)
exercise to produce an actual proof.

Having said all this, we should actually give one of the definitions of com-
putable function. Although they are all equivalent, the different definitions lend
themselves more readily to different applications— another very practical feature
of computability theory. The definition that will be most useful to our own work
is the recursive function definition of Godel.

When we write f :C A — B, we mean that f is a function whose domain is
a subset of A (possibly A itself). In much of mathematics it is a convention to
explicitly state exactly a function’s domain, but this convention would rapidly
become a huge pointless eyesore in computability theory, where the domain of
a function is often a bizarre and not-really-important set of tuples of natural
numbers.

Definition 1: The computable functions (also called the recursive functions)
are defined inductively as follows:

1. The basic functions are computable. These are the zero function O : N — N
defined by O(n) = 0; the successor function o : N — N defined by o(n) =
n + 1; and the projection functions defined, for all i,k € N, 0 < i < k, by

F NP 5 N (0,0, np) & 0

2. (Closure under Composition) If ¢ :C N¥ — N is computable and for 1 <
1 <k, ¢; :C N* —» N is computable, then the function f :C N* — N

defined by
f(7) = ¢(e1(), .., ox (7))

is also computable. Here we write 7 for nq, ..., ny; this will be done fre-
quently throughout the paper, and should cause no confusion.

3. (Closure under Recursion) If g :C N* — N is computable and h :C N¥+2 —
N is computable, then the function f :C N**! — N defined by the recur-
rence relation

o [g(@)if 0,
f(n,m)—{ (T;-L»’ (gl 1),m

— 1) otherwise

is computable.

4. (Closure under Unbounded Minimization) Suppose g :C Nft! — N is
computable. Define the function f :C N¥* — N by

f(z1,...,xp) = min{y|g(z1, ..., 2k, y) = 0 and g(=z1, ..., z,) exists Vz < y},

whenever any such y exists. Then f is computable.

In the appendix the reader can find some explicit proofs that some functions
are recursive; if one is unfamiliar with the mechanics of inductive definitions like
the one above, a leisurely glance through the appendix would no doubt shed
light. The important thing is not the nitty-gritty details but rather the fact
that the computable functions essentially capture the intuitive idea of functions
that can be computed by some algorithm.

Note that closure under unbounded minimization allows functions whose
domains are not all of N¥ for any k, to still possibly be computable. It basically
allows us to build a “brute force search” into a computable function— even if the
brute force search will never succeed at some input (in which case the resulting
function is undefined at that input). Closure under unbounded minimization
basically allows us to accomodate brute force searches in our algorithms.

There is a subtle point here: we are only considering functions which accept
at least one input, in the spirit of most mathematics. In this, we are following
Bilaniuk in [2]. Many computability theorists allow so-called “0-place functions”
which are basically constant. The difference between the two approaches is
superficial: a 0-place function can always be emulated with a 1- or more-place
function which simply ignores its inputs.

With this knowledge of computability theory, we can turn our attention
toward the problem at hand: using computability theory to attack the formula
problem in very broad generality.

3 Formalizing Formulas

We often speak of formulas in an intuitive sense. We might say that a certain
function has a formula in terms of basic arithmetic and exponents, for example.
How would we formally define the set of functions that have formulas in terms
of basic arithmetic and exponents? The most straightforward way to pull this
off would be an inductive definition: we begin by listing some basic functions
as being in the set; for example, constant functions and the identity function.
Then we would start listing some closure properties: for example, closure under
addition. We would specify that if f and g are in our set, then f 4 g is also in
our set. We would specify similar closure properties for multiplication, division
and exponents, and we would be done.

To prove that something like f(z) = 522+2% +4 is in our set, we would begin
by noting that 5, 2, 4 and z are in our set, being constants and the identity
function. Then z? and 2% are in our set by closure under exponents, so 5z2 is
in our set by closure under multiplication, and finally 522 + 2% + 4 is in our set
by closure under addition.

The type of functions we grant formula status to depends on what kind
of formulas we’re intuitively thinking of. If we’re thinking of formulas that can
involve infinite series, then the above example would not suffice. For this reason,
there is no, and indeed can be no, standard definition of functions which have
explicit formulas.

Now suppose f(z,y) has a formula. Then g(z,y) = f(y, z) should intuitively

have a formula, and so should h(z,y,2) = f(z,y). But how can we take care
of these in our definition? The answer is a combination of composition and
projection (as defined in Definition 1). We include the projections 7¥ (1 <
i < k) as having a formula in the base case of our inductive definition, and
then we allow composition, so that, since f(z,y) has a formula and 77,73 have
formulas, f(n3(z,y),7?(z,y)) has a formula. But this is just f(y,z). And
likewise f(m}(x,y,z2),73(x,y,2)) has a formula, which is to say h(z,y,z) =
f(z,y) has a formula. Note that by including the projections, we get the identity
function 7{ as a special case, and so do not need to mention it explicitly.

With all this in mind, we give the definition we shall use throughout this
discourse.

Definition 2: The set F' of functions that have explicit formulas is defined
inductively as follows.

1. F includes the atomic formula functions, which are: the constantly 0 and
constantly 1 functions O : N - N:n—0and1: N - N:n — 1; for
each k > 0, 0 < i < k, the projection 7% : N¥ — N : (nq,...,n;) = ny; the
Kronecker § function

lifm=n,

. N2 .
0: N = N:(n,m) ~ { 0 otherwise;

and the functions

Add:N* = N: (m,n) = m+n,
Multiply : N> = N : (m,n) = mn,
Subtract : N> — N: (m,n) = |m —n|,

Power : N> - N: (m,n) = m"

(we define 0° to be 1).

2. F is closed under function composition (which is defined as it was in part
2 of Definition 1).

3. F is closed under infinite series and finite series, that is to say, if f :C N¥ —
Nand g:C N*! - Nare in F, k > 1, then the (k — 1)-variable functions
Yoo f(7,i) and Efi’g) f(it,i) are in F. Note the domain of > :° f(7,%)
only includes those 7 such that the series converges.

|

Note that since F' contains Add, Multiply, Subtract, and Power, and
since F' is closed under composition, it follows F' is closed under addition, mul-
tiplication, absolute value subtraction, and exponentiation of functions.

Example: Suppose f(z,y,2) = 2z + §(z, 2) + zyz/®Yl. Intuitively we can tell
at a glance that f has a formula using just the machinery from Definition 2.
But to rigorously prove it, we proceed thus:

1. fi(z,y,2z) = 2z is in F because 2z = 7} (z,y,2) + 75 (z,y, 2) (here we're
using closure under addition).

2. faz,y,2) = §(z, 2) is in F because d(z, z) = d(73 (z, vy, 2), 75 (z,y,2)) (here
we’re using closure under composition).

3. fa(x,y,2) = xyz*~¥l is in F because we can write it as
3 .3
fa(@,y,2) = m} (2,y, 2)m3 (2, y, 2)73 (2, y, 2) ML 0 (202)]

(here we’re using closure under basic arithmetic repeatedly).

4. f(x) = 2x+6(x, 2)+xyz* ¥ isin F by the previous observations combined
with closure under addition.]

Unless it is not immediately obvious that a formula is in F', we will not
explicitly hash out the proofs, and in practically all cases it will suffice to simply
give a formula for a function, to establish it is in F.

We shall use §(z,y) to denote |1 — &(z,y)|. Of course § € F. Just for the

record we write Fo
= _J lifzx#y
0(@,y) = { 0 otherwise.

The following lemma, will be used repeatedly throughout. It provides some
heuristical guidance for crafting formulas.
Lemma 1: Suppose f : N* — {0,1}.

1. Let g : N¥* — N be defined by: g(7,i) equals the number of 1’s that occur
in f(7,0), f(7,1), ..., f(7,4). Then g € F if f € F, and in any case

g(i,i) = f(#,).
j=0

2. Let g : N~ — N be defined by: g(7#) = 1 if f(ii,i) # 0 for some i € N,
otherwise g(77) = 0. Then g € F if f € F, and in any case

g(@) = Zﬁ(o,f(ﬁ,i))é 1,25(0,f(ﬁ,j))

Proof:
1. Each ith term adds 1 to the overall sum if and only if f(7,4) # 0.

2. The ith term adds 1 to the overall sum precisely when f(7,i) # 0 and
the number of j, 0 < j < i, such that f(7,j) # 0, is precisely 1, i.e., i is
minimal with this property.

Among F', the set of functions with formulas in the sense of Definition 2, we
single out a very special subset.

Definition 3: By Fj, we mean those functions in F' which can be proved
to be in F' without appealing to the closure of F' under infinite summation.

Intuitively speaking, a function is in Fp if and only if it has an explicit
formula using only the machinery of Definition 2, and specifically not using
infinite series.

The next function will prove enormously useful for proving that various
functions have formulas in the sense of Definition 2.

Definition 4: The prime exponent function p : N> — N is defined thus: if
2 = 0 or y = 0 then p(z,y) = 0; otherwise, p(z,y) is the power appearing on the
yth prime in the prime factorization of . We’ll usually write p, (z) for p(z,y).

Lemma 2: p € Fp.

Loosely speaking, Lemma 2 says that p has an explicit formula using just
the machinery of Definition 2, and without any infite summation.

Proof of Lemma 2: Define f: N> — {0,1} by

lifa+#0,b#0, and alb,
0 otherwise.

flab) = {

We claim ,

f(a,b) = 5(a,0)8(b,0) Y &(ai, b).
i=0

If a = 0 or b = 0 the righthand side is killed by &(a,0) or &(b,0), respectively,
and the claim holds. Assume a > 0 and b > 0, so d(a,0)d(b,0) = 1. If a|b there
is a unique 0 < k < b such that ak = b. Then the kth term in the sum is 1 and
all other terms are 0, so the whole righthand side is 1. If a { b then no such k
exists and every term in the sum is 0, so the righthand side is 0 and the claim
holds.

Next, define g : N — {0,1} by g(n) = 1 if n is prime, g(n) = 0 otherwise.
Now, n is prime if and only if there are precisely two distinct ¢ with i|n, that is,
precisely if there are two distinct ¢ with f(i,n) = 1. So by part 1 of Lemma 1,

gm)=6(z§:ﬂum>.
i=0

Next, define h : N — N thus: h(n) shall be the nth prime number when
n > 0, and h(0) = 0. We claim

h(n) = Zig(i)5 H,Zg(j)

From part 1 of Lemma 1 it follows that

5| n > 90
7=0

is 1 or 0 depending whether or not there are precisely n prime numbers between
0 and ¢ inclusive. If 4 is the nth prime number, then there are precisely n primes
between 0 an 4 inclusive, so the ith term in the sum is ig(i) = i. Otherwise,
if 4 is composite, then g(i) = 0 so the ith summand vanishes, and if 4 is prime
but not the nth prime, then there are not precisely n primes between 0 and
i inclusive, so again the ith summand vanishes. So the only term that can
possibly be nonzero is the h(n)th term. This term is present because h(n) < 27
(any elementary number theory book can be consulted for a proof of this fact).
So the one nonzero term is the h(n)th term, which equals h(n), establishing the
claim.
Now we claim for z,y € N that

T

pla,y) = > f (hy)H,2).

=0

If x = 0 or y = 0 this is immediate. Suppose z > 0 and y > 0. Then h(y)
is the yth prime, and f(h(y)**!,) is 1 if and only if h(y)*|z. So if m is the
maximum integer with h(y)™|z, then the i = 0,4 =1, ..., i =m — 1 terms will
all equal 1 and any further terms will equal 0 (note that the sum has at least
m terms because > h(y)™ > m). This proves the claim.

We can expand this formula for p(x,y) by using our formula for h, and we
can expand the result using our formula for g, and we can expand that result
using our formula for f. This gives a formula for p(x,y) using just machinery
of Definition 2 and using no infinite series.]

Since infinite series allow for functions to diverge at some points, the follow-
ing terminology is useful:

Definition 5: Let f be a function. By dom f, we mean the domain of f. If
dom f = N¥ for some k > 0, we say that f is a total function.

Note that functions in Fj are total since the only way to cause a function to
be undefined at some point using just macheriny from Definition 2 would be to
take an infinite series at some point.

Remark: The wary reader might feel uncomfortable about our declaring
0% = 1, since there is no standard definition of 0°, many authors defining it to
be 1, some defining it to be 0, and others leaving it undefined altogether. As
a matter of fact, the functions which have or don’t have formulas according to

Definition 2 do not depend on what stance is taken on 0°. To see this, let

B 2yifx#Qory #0
f(z,y) = { 1 otherwise,

[a¥ifzx#Oory#0
g(z,y) = { 0 otherwise,

2yifx#OQory#0
undefined otherwise.

o) = {
Then by simply considering the cases z = y = 0 or not, we have

f(z,y) = g(z,y) + 6(z,0)d(y,0)
9(x,y) = h(z,y + i(,0))

o
h(@,y) = f(z,y) + > 8(x,0)5(y,0),
i=0
where in the third equation both sides are undefined at x = y = 0. Thus, all
other machinery of Definition 2 being fixed, it does not matter which version of
exponent we allow, we will get the other two for free. We take 0° = 1 because
it will prove very convenient that functions in Fy be total.

4 Formulas for Computable Functions

In this section we show that all recursive functions are in F' and any given
recursive function can be proved to be in F' using at most one appeal to closure
under infinite series. Intuitively what this means is that every recursive function
has a very basic explicit formula using no more powerful machinery than possibly
one infinite summation.

Definition 6: The following terminology will shed considerable intuitive
light on the beautiful ideas buried under a heap of details in Lemma 6 below.

Let f :C N* — N and f : Nt*1 5 N be functions; note that f is total,
although f may not be. We say that ¢ € N is a key to f at 7 via f if either

1. f(#,i) =0, or
2. it € dom f and f(,i) = f(7) + 1.
If the 2nd case applies (the two cases are clearly mutually disjoint) then we say
i is a proper key to f at i via f.
This is summarized in the following table:

‘ Scenario ‘ Diagnosis of ¢ ‘
f(@,i)=0 i is a key but not a proper key (to f at @ via f)
f(ii,i) = f(/) + 1 | i is a proper key (to f at 7 via f)

Any other case i is not a key (to f at 7 via f)

Definition 7: We say f is a gate to f if for all 7 € N¥:

1. Forall i € N, i is a key to f at @ via f, and
2. If @ € dom f then there exists a proper key i to f at @ via f.

The first requirement can be thought of as stating that f “has a keyhole”,
into which any key whatsoever can be inserted, but which will not necessarily
respond to all keys (some keys will not turn the lock). The second requirement
can be thought of as stating that some key will turn the lock, at least where
the domain of f allows as much.

An intuitive way of thinking of keys and gates is as follows. If we want to
find a function f at a point 7 in its domain, and we have a gate f to f whose
values we know, we need only plug a proper key into f and the value of f will
appear (plus 1). The reason for adding 1 is so that we can tell when we’ve
found a proper key— it will produce a nonzero value in f. Of course we can
easily subtract the 1 back off.

At this point we will dispatch a number of lemmas. These are very technical,
but beneath the technicalities is buried a notion of computation by guessing
which is fundamental to the work. The lemmas will culminate in an alternate
characterization for computable functions in terms of gates, keys, and formulas,
and this will lend itself well to our attack on the formula problem for computable
functions.

Throughout, D : N — N shall be defined by D(n) = n — 1 if n > 0,
D(0) = 0; D is in Fy because evidently D(n) = ||n — 1| — §(0,n)| (the absolute
values around n — 1 are required because we have no machinery for dealing with
negative numbers; when n = 0, |n — 1| = 1 while we want D(n) = 0, hence the
—6(0,n) term; the outer absolute value does not actually avoid any negative
numbers, but is nonetheless necessary if one wants to follow Definition 2 to the
letter).

Lemma 3: Let S be the set (for all k) of functions f :C N¥* — N such that
there exists a gate f : N1 — N to f, such that f € Fy (in words, S is the set
of functions of any number of variables with gates that have formulas that do
not use infinite summation). Then S is closed under composition.

Proof: Suppose ¢ :C N — N (sor >0), ¢; :C N - N (§ =1,2,...,7) are in

S. So there exist gates ¢ : N't1 5 N, ¢; : N+l 5 N, in Fy. Let f :C N* » N

be defined by f(7) = (¢ (7?), ..., ¢, (77)). We must show f has a gate f € Fp.
Define f : N¥t1 — N by

F(,3) = HDG1 (7, p1(0))); s DG (7, (D) P41 (1)) A,),
where
(i) = 6 | 0,326 (0,6,(.p;(9))

Since r is fixed, by applying closure under addition repeatedly! we see (2 €
Fy, and then it’s clear f € Fy. We will show f is a gate to f. First consider 2.

IThere is a subtle point here. It is tempting to say we can apply closure under finite sigma,

10

When can it be zero? It is zero precisely when qNSj (7,p;(i)) =0forsome 1 < j <
r. Thus Q is 0 precisely if p; (i) is not a proper key to quSj for some j; otherwise it
is 1. In the former case, f (71, i) becomes 0 and i is not a proper key. In the latter,
the pj(~i) is a proper key to ¢; for all j, so f(7,i) = Y (p1(7D), ..., dr(70), Pr41(3)).
Thus f(,4) is f() + 1 precisely if p,11 (i) is a proper key to ¢ and each p; (i)
is a proper key to ¢;; and f (7,1) = 0 otherwise. This demonstrates f is a gate
as claimed, and proves the lemma.

|

Observe how the function D defined above plays the role of subtracting off
the 1 when we get an answer from the gate— the gate, by definition, returns a
value 1 higher than we want, so as to allow identification of non-proper keys.
We’ll be using D in this way often in the following lemmas.

We'll give an example to show more clearly what is really going on in the
construction of Lemma 3.

Example: Throughout this example, all functions will have the obvious
domains and codomain N. Define

Y(z,y) =z +y
'gﬁ(x, y,4) = (x +y+1)d(,5)
¢1(z,y,2) = zy
$1(,y,2,1) = (xy +1)5(i,7)
¢a(z,y,2) =yz+1
b2 (x,y,2,9) = (yz + 2)8(i,9).

Then 1&, (]31, and qu are Fy gates for ¥, ¢1, and ¢ respectively: it’s easy to see
O(x,y,1) is Y(z,y) + 1 if i = 5, 0 otherwise; that ¢y (z,y,2,7) is ¢1(x,y,2) +
1if ¢ = 7, 0 otherwise; and that ¢o(z,y,2,9) is ¢o(z,y,2) + 1 if i = 9, 0
otherwise. The astute reader will note these gates are unnecessarily complicated,
for instance = + y + 1 would be a simpler gate for i; however, by restricting
the proper keys in this way, the inner workings of Lemma 3 will be more fully

exposed. We’ll use Lemma 3 to obtain an Fy gate f for

f(wayaz) = ¢(¢1 (xayaz)a¢2(wayaz)) =zy+yz+ 1.

notation here, but we cannot. To do so, we would need to know that the function
s(7t,i,9) = 6 (0,8 (7,9 (1))

had a formula, but “taking the jth subindex” is not one of our allowed operations (however,
p;(4) is fine since, the reader recalls, it’s just shorthand for p(4,j)). So instead we must use
closure under addition » — 1 times. For example if r = 1000 then the formula for 2 will contain
1000 individual summands rather than a single slick sigma notation symbol. But since r is a
fixed constant, this is fine.

11

Writing & for x,y, z, we define Q by

0@, 1) = (0,8 (0,615 @) + (0,67, 12(2))))
= 60,8 (0, (zy + 1)3(p1 (1),) + 8 (0, (yz + D3(pa(0), 9))) .

If p1(i) # 7 or pa(i) # 9 then at least one of (zy + 1)d(p1(i),7) or (yz +
2)d(p2(i),9) will vanish, and we’ll get Q(Z,i) = 0. Otherwise neither will vanish
and we’ll get Q(Z,7) = 1. So

0F,i) = { 0 if py (i) # 7 or pa(i) # 9

1 otherwise.
Next, still following Lemma 3, we define
(@) =4 (D (0@ p1))) , D (27, p2(0))) , pa(0)))

=4 (D ((zy + 1)8(p1(0), 7)), D ((yz + 2)5(p2(7),9)) , p3(0)) A, 7)
= (D ((wy + 1)d(p1(9), 7)) + D ((yz + 2)0(p2(i),9)) + 1) 6(ps (i), 5)UZ, 9)-

If p1(3) # 7 or p2(i) # 9 then Q will annihilate the whole expression. And
if p3(i) # 5 then 6(ps(i),5) will annihilate the whole expresson. But assume
p1(i) =7, p2(i) =9, and p3(i) = 5. Then

6(p1(i), 7) = (S(pQ(Z),Q) = 6(p3(i)a 5) = Q(:Ea Z) =1
and the whole expression becomes

f@i)=(D(@y+1)-1+D(yz+2)-1+1)-1-1
=D(zy+1)+D(yz+2)+1
=zy+yz+1+1
=f(@)+1

So fisa gate to f, and explicitly its proper keys are those ¢ such that, when 4
is factored into primes, it looks like i = 27355 -- .. Note that (2 is indispensible
here. If we erased the Q factor and evaluated f(0,0,0,5%) we would get D(1 -
0)+D(2-0)+1=13# £(0,0,0)+1=2 and so 5° would not be a key to f via
f at (0,0,0), hence f would not be a gate to f.

Lemma 3 demonstrates the notion of computation by guessing. In order
to compute f, we take the gates ¥, ¢1, ..., ¢, and guess proper keys for them.
Most our guesses will be false, so we may have a long wait ahead! But if we're
systematic, since proper keys do exist, eventually we will stumble upon them.
It is relatively simple to “encode” this process formulaically in Lemma 3 (this
type of encoding process is used often in computability theory and goes by the
monicker of Gddel numbering); in the next two lemmas our methodology is
similar but the details are more daunting.

12

Lemma 4: The set S in Lemma 3 is closed under recursion.

Proof: Suppose g :C N*=! - N, h :C N¥f! — N are in S, so they have Fp
gates § : N* — N and h : N2 — N. Define f :C N* — N by the recurrence
relation

f(#@,0) = g(77)
f@@,m+1) = h(#, f(7i,m),m).

We must show f has an Fj gate.

The process we encode is as follows: guess what f(7,0), ..., f(7i,m — 1) are
and store these guesses. At this point we do not know whether these guesses are
correct. To check, we can use the gates to g and h. Thus, guess a proper key for
g at 7 and guess proper keys for h at (i, f(i,0),0), ..., (77, f (7, m — 1),m — 1);
store these guesses. We can proceed if and only if all these numerous guesses
happened to be correct. If not, we shall throw them away and guess again until,
eventually, we succeed! To check if a guess is correct, we need to check if all
the guessed keys are proper, and then check if the guesses for the f(7,4) were
correct by using the keys and the definition of f. A guess will be encoded in an
integer, and a completely correct guess will correspond to a proper key to the
new gate for f. Information will of course be stored in prime exponents. Here
is our “f key blueprint”:

(7) : A guess of a proper key for h at (i, f(7,0),0)
(7) : A guess of f(,0)
p3(i) : A guess of a proper key for h at (7, f(7,1),1)
(i) : A guess of f(7,1)

DP2m—1(@) : A guess of a proper key for h at (7, f(7,m — 1),m — 1)
pam (%) : A guess of f(7l,m — 1)
pam+1(4) 1 A guess of a proper key for g at (1)

We build f in pieces, each piece in Fy.

The basic idea is to multiply several factors together to test the validity of a
guessed key, according to the above key blueprint. The first crucial factor will
be 1 if the subkeys encoded in the guessed key are proper at the appropriate
points, and 0 otherwise. We will formally define this factor below: it will be
Py (i, m,). The second crucial factor will be 1 if the subkeys encoded in 4 are
consistent with the guessed values of f encoded in ¢; and 0 otherwise. This will
be Py (71, m,) below. Py (7, m,1) will be a factor in P»(7i,m,%) so that, together
with some minor additional factors, we will obtain a product which will equal 1
if our guessed key meets the key blueprint specifications above, and 0 otherwise.

13

Define P; : N*+1 — N as follows: P; (7, m,i) = 1 if m > 0 and the guessed
keys encoded in i, according to the above blueprint, are all proper, assum-
ing the guessed values of f are correct; P;(i) = 0 otherwise. More formally,
Py (i,m,i) = 1 if and only if m > 0 and §(7, p2m+1) > 0 and for all 0 < j < m,
(7, pajy2(i), j,p2j41(i)) > 0. To convince the reader P (i7,m, i) is in Fy, we
note that
Py(it,m, i) = 6(0,m)8(0, §(7T, pam-+1(i)))

5 (0, 5757 6(0, A, pajr2 (i), 4, p2s41(3)))) -
To see this, note that

6(0, h(, p2j+2(), J, p2j+1(7)))

is nonzero precisely if h(#, paj12(i), j, p2j+1(i)) = 0, so the sum is nonzero pre-
cisely if one of the guessed keys for h at (7, p2j4+2(¢),7) is non-proper (where
P2j+2 is what we are guessing for f(i, j); for now we’re ignoring whether the
guess for f(i, j) is correct). So

D(m)
510, > 60, h(, pajya(i), J, p2js1(9)))

=0

is 0 precisely if one of the guessed keys for h is non-proper, 1 otherwise. The
role of the other two factors is similar but simpler.

Second, define P, : N¥*1 — N thus: Py (7, m,i) = 1if m > 0 and i encodes a
completely accurate set of guesses, that is (formally), m > 0 and Py (7, m,i) =1
(so the proper key guesses are all on the mark), p2(¢) = D(§(#, pom+1(4))) (so
the guess for f(7,0) agrees with g(7)) and for each 0 < j < m, pajy2(i) =
D(h(#,pa;j(i),§ — 1,p2j+1(5))) (so the guess for f(7,) is determined according
to the recurrence relation which defines f). We claim
P, (ﬁa m, Z) = 5(07 m)Pl (ﬁa m, z)5(p2 (2)7 D(g(ﬁa p2m+1(i))))

é (D(m), Ef:((?(m)) 6(1,m)d(p2jt+a (i), D(h(7, p2j+2(7), J, P2j+3 (i)))))-
To see this, assume m > 1. The other two cases are similar with some minor
extra details thrown in. Then we can ignore the §(1,m). For a given 7, pa;4(i)
is our encoded guess for f(7,j + 1) (consult the key blueprint), p2;4+2(7) is our
encoded guess for f(7,j) and pa;13(i) is our encoded guess for a proper key
to h at (@, f(,5),7) via h. We can assume the guessed h-key is proper since
otherwise P; will kill off everything. Thus

8(p2jr4(8), D(h(, paj2(i), 4, p2jt3(i))))

is 0 precisely if h(7, p2j+2,§) = P2jta, or in English: this quantity is 0 if and
only if , assuming our guess for f(, j) is correct, then our guess for f(7,j + 1)
satisfies the recurrence relation f was defined by, and so our guess for f(7,j+1)
is also correct. If our guess for f(i7,0) is incorrect then the factor

6(p2(i), D(§(77, pam+1(7))))

14

kills everything off (consult the key blueprint), so assume our guess for f(7,0)
is correct. Since we are assuming m > 1,

D(D(m))

Z 8(1,m)3(p2jra (i), D(h(7, p2j+2(i), j, p2j+3(9))))

equals D(m) precisely if each

8(p2j14(8), D(h(, paj2(i), 4, p2jt3(i))))

is 1, which by the above reasoning is true precisely if (since our guess for f(7,0)
is correct) our guess for f(7,1) is correct and (since our guess for f(i,1) is
correct) our guess for f(,2) is correct, and so on. Ergo, when our guess at
f(7,0) and all our key-guesses are true, then

D(D(m))

Z 8(1,m)3(p2jra (i), D(h(7, p2j+2(i), j, p2j+3(9))))

is D(m) precisely if all our guesses for f(i,j) are correct; from here the claim
is clear. Evidently P> € Fy. ~
Finally, combine the pieces and define f : N+1 — N by

f(ﬁamal) = 5(07m)g(ﬁa Z) + P2(ﬁ>maz)il(ﬁ7p2m(z)7 D(m);P2m—1($))

We claim that f is a gate for f. If m = 0 then f(,m,i) is just §(f,i) (P
vanishes since it is a multiple of §(0,m)) and it inherits §’s keys exactly. Assume
m > 0. The way we’ve designed it, f(7,m,4) will be 0 if ¢ does not fit the above
blueprint perfectly. But if it does fit the blueprint (and at least one such
exists, assuming @i € dom f, since § and h have proper keys), Py (7, m,i) = 1
disappears from the product and

f(ﬁ; m, l) = i”(ﬁa D2m (l)a D(m)7p2m+1 (l))
= i”(ﬁa f(ﬁam - l)am - 17p2m+1(7:))
=h(@, f(A,m—1),m—1)+1
So f is the gate we desired, proving the lemma. [|

In the above proof, as an example of how the “key blueprint” works, the
key 78750 = 2! x 32 x 5% x 7! corresponds to guessing that 1 is a proper key
to h at (7, f(7,0),0) via h, that f(77,0) = 2, that 4 is a proper key to h at
(7, f(7i,1),1), that f(7,1) =1, that f(77,5) =0 for j =2,3,...,m — 1, that 0 is
a proper key to h at (7, f(#,)) via h (for j = 2,3,...,m — 1), and that 0 is a
proper key to g at 7.

The next lemma is much the same as the previous.

15

Lemma 5: Let S be asin Lemma 3. S is closed under unbounded minimization.

Proof: Let g :C N*t1 — N be in S, and let § be an Fy gate for g. Define
f:C N* = N in the usual way: f(i7) shall be the smallest m with g(i7,m) = 0
when such m exists (otherwise 77 € dom f). We must show f € S.

The procedure is almost identical to that in Lemma 4. We proceed by
guessing what the answer is, then we guess keys to the gate for g and use them,
and the definition of f, to make sure our guesses are correct. Guesses are stored
as prime exponents in an integer, and an integer encoding a perfect sequence of
guesses shall be a proper key to the (as yet unconstructed) gate f. Here is the
“key blueprint”:

p1(7) : Guess for f(77), i-e., how far we need to search to find a zero
p2(i) : Guess for a proper key to g at (7,0) via §
p3(7) : Guess for a proper key to g at (7,1) via g

Pp,(i)+2 (i) : Guess for a proper key to g at (7, p1(7)) via §

Once again, we build f in pieces. First we define Py (7,7) to equal 1 if the
key-guesses encoded in i are entirely accurate (ignoring whether the guess for
f(7) is itself accurate for the time being). This is easy: we just check that
9(7, j,pj+2(i)) > 0 for 0 < j < p1(¢). Thus note

p1(%)

Py(it,i) =6 | 0, > 6(0,(7, j, pj12(i)))

=0

Next we define P> (1, ¢) to equal 1 if §(7, j, pj4+2(¢)) # 1 for all 0 < j < p(3);
and 0 otherwise. Loosely speaking, if we assume the key-guesses are accurate,
P, (7,4) equals 1 if and only if g(77, j) is nonzero (or undefined) for all j up to
(but not including) what we are guessing is f(7). If g(#,j) s undefined for
some j, there is no need to worry: P;(7i,4) will turn the entire product to 0,
because it is impossible to guess a proper key for a point not even in the domain!
Anyway, we note now

p1(d)

Py(it,i) =6 | 0, 8(3,p1(2))8(1, §(7, 4, pjya()))

=0

We had to do some gymnastics here: the idea is to take the sum up to py (i) — 1,
but troubles arise if p; () = 0 since Definition 2 does not accomodate the symbol
>0 ! so instead we sum all the way up to pi (i), but “turn off” the pi (i) term
itself by multiplying by 6(7,p1 (%)).

16

Finally, define

[, 0) = Pu(i,4) Po (7,) (p1.(6) + 1)8(L, §(77, p1.(4), Py, (5)+2(9))) -

We claim f is a gate for [. The reasoning is very similar to that in Lemma 4
and we omit the details. f certainly is in Fy so this proves the lemma. []

As promised, these lemmas allow us to give an alternate characterization of
the computable functions. In honor of the methodology used in Lemmas 3, 4,
and 5, we give this next lemma a name:

Lemma 6 (The Guessing Lemma): Let f :C N¥ — N. Then f is computable
if and only if there exists a gate f to f with f € Fp.

Proof: Suppose f € Fy is a gate to f. Here is an algorithm to compute f(7):

1. Take input 7 € N*.

2. Let I =0.

3. If f(72,I) > 0, output f(i7,I)—1 and halt.
4. Add 1 to I and return to step 3.

Line 3 in the algorithm is effectively computable because all the machinery
of Definition 2 is effectively computable, except for infinite series; but we do not
need infinite series to deal with f because it lies in Fy. By the Church Thesis,
f is computable.

To prove the converse, we use induction on the number of steps needed to
prove f is recursive using the statements of Definition 1. If f can be proven
recursive in just one step, then f is O, o, or 7r;-“ for some 1 < j < k. These
have Fy gates O(n,i) =1, 6(n,i) = n+ 2 and ﬁf(ﬁ, i) = n; + 1, all evidently
Fy. Now suppose f takes k > 1 steps to prove recursive using Definition 1.
Then maybe f can be defined, using part 2 of Definition 1, as the composition
of functions which can be proven computable in fewer than k steps each. Each
of these functions, by induction, has an Fy gate, and so by Lemma 3, so does
f. Or maybe f can be defined, using part 3 of Definition 1, using recursion on
functions which can be proven computable in fewer than k steps each. Each of
these functions, by induction, has an Fy gate, so by Lemma 4, f does. Finally,
maybe f can be defined using unbounded minimization on a function that can
be proven to be computable in fewer than k steps. Then again that function
has an Fy gate by induction, and by Lemma, 5, so does f. []

With the Guessing Lemma under our belt, we can state the main result of
this section, which follows quite easily.

Theorem 7: Every computable function has a formula, in the sense of Defini-
tion 2.

17

Loosely speaking, every computable function has an explicit formula using
the machinery from Definition 2.

Proof of Theorem 7: Let f :C Nt — N be recursive. By the Guessing
Lemma, there is a gate f : N1 - N, f € Fy. Let D : N — N be defined by
D(0) =0, D(n) =n —1 for n > 0 (recall D € F). We claim that

o0

f@@) =D | £ 17,3580, f(,i))6 0263, 30, f(,0) || |+

=0

where of course if 7i ¢ dom f then both sides of the equation are undefined.
To see this, we evaluate from the inside out. The term 6(4,4)0(0, f(7, 7)) is
0if j =i orif j is not a proper key to f at 7 via f. Therefore, the sum

is precisely the number of proper keys j such that 0 < j < i. Knowing this, we
see immediately that 8(0, f(7,4))8 (O,E;:() 8(4, i)E(O,f(ﬁ,j))) is 1 if ¢ is not a
proper key to f at 7 via f and there are no keys smaller than . So that if
it € dom f then 2%, 3(0, f(i%,i))6 (o, 0 8(3,0)8(0, £ (7, j))) is a sum where
we keep adding 1 until the smallest proper key is found, and 0 after that. For
example, if 3 is the smallest proper key, this sum becomes 1+1+1+0+0+0+- - -

So in fact this sum is the smallest proper key. Therefore the claim that the
equation holds is immediate. On the other hand, if @ & dom f, then there is no
proper key, so this formula for a proper key becomes Y :° 1 which diverges, so

both sides of the equation are undefined.
This proves the theorem, since we’ve written a formula for f. []

The Guessing Lemma and Theorem 7 are constructive, given a proof that f is
recursive (for examples of proofs of recursiveness, see the appendix). Informally,
this basically says the hard problem of finding a formula for a function is reduced
to the routine problem of programming that function in one’s computer language
of choice! Of course, if one follows these recipes directly, they result in some
astonishingly complicated formulas.

Example: To illustrate the constructive aspect of the theory so far exposed, we
will apply Theorem 7 to obtain a formula for the + function +(n, m) = n + m.
Of course +(n,m) = n + m is itself a formula, indeed a much simpler one than
the one we will arrive at, so this excursion has no practical purpose.

We begin by giving a direct proof that + is recursive. This is needed be-
cause our theorem is constructive based on a proof of recursiveness. First, the
projections 71,73 and the incrementer o are recursive by the base case in the
definition of recursive. By closure under composition, o o 73 : N> — N, given
by (o o73)(a,b,c) = b+ 1, is recursive. Now we can define + by the recurrence

18

relation
+(n,0) = 71 (n)
+(n,m +1) = (0 0 w3)(n, +(n,m),m),

so that + is recursive by closure under recursion.

The Guessing Lemma yields the gates 7} (n,i) = n+ 1 for 7, 73 (a, b, c,i) =
b+1 for 73, and 6(n,i) = n + 2 for 0. The gate for o o 7§ is more complicated
to find: the Guessing Lemma proof tells us to consult Lemma 3, which provides

the gate

(0 0m3)(a,b,c,i) = & (D(75(a, b, ¢, p1(2))), p2(4)) 8(0,6(0, 73 (a, b, ¢, p1(0))))
=(D(b+1)+2)(0,6(0,b+ 1))
=(b+2)6(0,0) = b+ 2.

Now all the easy work is done and we jump into finding the gate for +. The

Guessing Lemma proof tells us to follow the instructions in Lemma 4. This is
done by first defining P; and P, as so:

Py(n,m, 1) = 8(0,m)3(0, 7 (n, pam 1 0)))5 (0. 257 6(0, (0 0 7) (n,
Pit2(0), 5, P21 (1))
= 5(0,m)3(0,n + 1)6 (0, S5 (0, pas(i) +2)
:3(o,m)5(0, =P 0) = 5(0,m).
Next we define P by:
Py(n,m, i) = 5(0,m)Pi(n,m,)3 (pa(0), D(7} (0, p2ms1(0)))) & (D(m),
S 51, m)8(pag44(0), D{(0 0 7)1, 242 (0), s pose3())))
5(0,m)3(0,m)(pa(i), D(n +1))8 (D(m), 2P 5(1,m)
8(p2+4(3), Dlpas (i) +2)))
= 5(0,m)3(pa(i),m)d (D(m), £ 3(1,m)
8P (0), Pajs2(i) + 1)) -

Putting these together, we obtain the gate

+(n,m, i)

— §(0,m)7L (1, 7) + 8(0,m) Pa(n1, m,)0 0 73 (12, pam (i), D(m), pam1 (i)
=0(0,m)(n + 1) + 6(0,m) Pz (n, m, i) (pam(i) + 2)

— 6(0,m)(n + 1)

B D(D(m))
+6(0,m)d(p2 (i), n)d (;Y 8(L,m)d(pajeali), pajra (i) + 1)) (P2m (i) + 2)-

7=0

19

Finally, using Theorem 7 with this gate, we get the formula

+(m,n)=D | + n,m,ig(o,—?(n,m,i))é O,ig(j,i)_(o,—?(n,m,j))
=0 =0

Expanding out the +’s in this formula is straightforward but tedious beyond
measure, leading to a very large formula for m + n. Of course, a much simpler
formula is just +(m,n) = m + n. The moral of the story is that in practice, it
is far wiser to apply heuristics and ingenuity to obtain a formula for a function,
rather than hash out the construction verbatim. + is an extremely simple func-
tion, taking only a few steps to prove computable. More complicated functions
which take more steps to prove computable lead to much larger formulas, if
the construction is used directly. Nevertheless, it is philosophically fascinating
that a construction does exist for obtaining formulas for computable functions,
however impractical it might be.

It’s natural to ask whether the converse to Theorem 7 is true. As a matter
of fact, it is not. Indeed the converse fails very badly: it turns out even much
more general functions have formulas using no more advanced machinery; the
remainder of this section will elaborate on this claim.

The arithmetical hierarchy is a broad class of subsets of N, about which quite
a lot has been written, see for example [4]. The hierarchy consists of sets IIj,
Y, for each k € N. The elements of II; and X are certain subsets of natural
numbers. Specifically: ¥ is the set of all sets of the form

{n|3m1 Vms Ims ---Qmy, f(n,my,...,mg) =1}

where the quantifiers start with 3 and alternate thereafter (so @ = 3 if k is odd,
Q =V if k is even), and where f : N¥+1 — {0, 1} is computable. TI} is the set
of all sets of the form

{n|Vmy ImaVmgz ---Qmy, f(n,mq,...,my) = 1};

here everything is as in the definition of X, except that the alternating logic
quantifiers begin with V instead of 3. Note that in particular when k = 0, the
list of quantified m’s is empty and we have g = Il is the set of sets of the
form {n|f(n) = 1} where f : N — {0,1} is computable.

Note that each ¥; C ¥;411 and each II; C IT;;1. To see this, take some f :
Nt+L 5 10,1} and note it can be extended to f' : N¥+2 — Nvia f'(n1, ..., ng42) =
f(ni,...,ngy1), i.e., ignoring the last input. Clearly f' will be computable if f
was. Now the statement

mG Elmk+1 fl(na my, "'7mk+1) =1
is identical to the statement

VY f(n,ma,...,mg) = 1.

20

Similar remarks hold if we swap 3 and V. So f contributes the same set to Il
or Y41, by way of f', that it contributes to II; or Y. As a matter of fact,
it’s possible to show that the inclusions are proper, so the hierarchy really is a
hierarchy as the name suggests.

Given a set S C N, we define its indicator function 1g: N — {0,1} by

ls(n):{ lifneS
0 otherwise.
The reason we care about the arithmetical hierarchy is that it turns out (see
[4]) that many sets in the arithmetical hierarchy have noncomputable indicator
functions.?

This is actually not surprising: given a set

S ={n|3Im f(n,m) =1}

from X1, consider the problem of writing an algorithm to check whether a num-
ber n is contained in S. The brute force solution is to check the value of f(n,m)
for every m € N, or until one m were found with f(n,m) = 1. Butif n ¢ S, this
algorithm will run forever, as its unfortunate implementor keeps checking more
and more m. Maybe f(n,m) = 0 for the first trillion values of m, but we cannot
rule out the possibility that the next value of m will finally have f(n,m) = 1! So
brute force fails. If f is well-behaved (for example constantly 0), then an ad hoc
alternative to brute force might work, but in general there will be functions f
such that S has noncomputable indicator function. And of course, the daunting
task of writing an algorithm becomes more and more hopeless as the number of
logical quantifiers increases.

The computer scientists among the audience will note the arithmetical hier-
archy includes sets whose indicator functions are minor variations of the Halting
Function, which is the canonical example of a noncomputable function. Infor-
mally speaking, pick a computer programming language of choice. There is no
effective way of determining if a given program in that language will halt when
given its own code as input; this is the Halting Problem, see practically any
textbook on computability theory. But there is an effective way of checking if
a given program will halt, when fed its own self as input, in a given number of
steps: just simulate the program for the given number of steps and note whether
it halts in that time or not. So, since programs can be thought of as natural
numbers (thanks to the fact they’re really just long binary words), there’s a
computable function f: N> — {0,1} such that

Flnms) = 1 if computer program n; halts on input n; within < ny steps
LT277 0 0 otherwise.

Then the set S = {n1|3n2 f(n1,n2) = 1} lies in 31, hence in the arithmetical
hierarchy. But S is exactly the set of programs which eventually halt when

2In fact, it can be shown that the sets with computable indicator functions are exactly
1 NI,

21

given their own source codes as input. So 1g cannot be computable: that would
solve the Halting Problem!

Theorem 8: If f : NF*! — {01} has a formula in the sense of Definition 2,
and

S = {n|3miVmeIms - - - Qmy, f(n,mq,...,my) = 1},
S" = {n|Vmi13ImsVms - -- Q"my f(n,ma,...,my) = 1},

then the indicator functions 1g and 1g- have formulas in the sense of Definition
2.

Proof: First, a remark: define f3: N* — {0,1}, fv : N* — {0,1} by

1if Imy st f(n,mq,...,my) =1
0 otherwise,

fa(n,ma,.,mp_1) = {

1if Vmyg f(n,my,...,mg) =1
0 otherwise.

fo(n,my, ...,mp_y) = {

Then f3 and fy also have formulas as in Definition 2. Indeed, if we let g(n, my, ...,my) =
|1 — f(n,mq,...,mg)| (so that g certainly has a formula) then

(o] me
fﬂ(namlr'wmk*l) = Z f(n7m17"'7mk)5 17Zf(n7m17'"7mk717j)
mr=0 7=0

o0 M
fon,ma,...,mp_1) = |1 — Z g(n,ma,...,my)0 I,Zg(n,ml,...,mk_l,j)
=0

mp=0

To verify the first formula, note the myth term is 0 unless my, is minimal such
that f(n,mq,...,my) = 1. The second formula is verified with similar reasoning,
and the fact that the statement Vmy f(n,m1,...,my) = 1 is equivalent to the
statement —=Imyg(n,my,...,my) = 1.

Now to prove the theorem, we use induction on k. Assume the theorem
holds for function which take fewer than k + 1 inputs.

Define f : N* — {0,1} by
7 1if Qmy f(n,ma,...,my) = 1 (remember @ is 3 or V)
flnyma, oy my 1) = { 0 otherwise.
Since f is either f5 or fy, by the remarks near the beginning of the proof, f has
a formula. If @) = 3 then let P =V, otherwise let P = 3. Then

S = {n|3m1 sz .. -Pmk_l f(n,ml, ...,mk_l) = 1}

This is trivial to see: just consider separately the casesn € S and n ¢ S. But
by the induction assumption, now 1g has a formula.
Similar reasoning shows 1g/ has a formula as well.

22

As for the base step, observe that when & = 0 we have the degenerate case
§=58"={n|f(n) =1},

and so in fact 1g = 1gr = f, so has a formula. So by induction, the theorem
holds.]

Corollary 9: If S is any set in the arithmetical hierarchy, then 1g has a
formula in the sense of Definition 2. In particular, the converse of Theorem 7 is
false.

Proof: Suppose S € Y. So there is a computable f : N*+1 — {0,1} with
S = {n|Im1VmaIms - - - Qmy, f(n,ma,...,mg) = 1}.

By Theorem 7, f has a formula in the sense of Definition 2, therefore by Theorem
8, so does 1g. Similar reasoning goes for f € Il.]

One direction in which our eyes are turned presently is the search for a
precise classification of functions which have formulas as in Definition 2. To the
reader who has studied the arithmetical hierarchy, Corollary 9 says this class of
functions is extremely vast!

5 Extension to Real-Valued Functions

Our results extend fairly easily to certain more general real-valued functions
on all of R. We would like to point out that there is a whole subfield of com-
putability theory dealing specifically with this: computable real analysis. A
caveat is that, perhaps counter to intuition, most schools of thought here hold
that discontinuous functions are noncomputable [5]. This seems strange at first
glance because it means some very predictable, well-behaved functions are non-
computable. For example, the function which equals 1 at 0 and 0 everywhere
else, is considered noncomputable, even though it is extremely simple! On the
other hand, suppose one were trying to compute such a function in a laboratory
environment, where the input variable was something like temperature, force, or
velocity. Determining whether the input were 0 or just something very close to
0 could be extremely difficult— in fact impossible. A lab scientist is constrained
by imperfect precision, even in the best of conditions, and so in an experiment,
the function described defies estimation (at least near 0).

Of course this does not mean every continuous function is computable. In
fact, if one takes any function N — N which is noncomputable in the classi-
cal sense and extends it in any way to a continuous function, for example by
“connecting the dots”, the result will be a noncomputable but continuous real
function.

Because of these subtleties, actually giving a definition of a computable real
function (and justifying it to any reasonable degree) is beyond the scope of this
paper. But we can surmount this difficulty and extend our own results without
actually having to delve too deeply into computable analysis.

23

The next theorem essentially says: if a continuous function can be effec-
tively computed to whatever accuracy you like, then it has a formula (if some
extra machinery is added to what we have been using so far). This is some-
what obscured in the wording of the theorem because we have to talk about
approximating real numbers using nothing but natural numbers! The confusion
is further compounded by the fact that negative numbers are involved. Keep
all this in mind when reading the exact wording of the theorem.

In the statement of the theorem, we use decimal digits. Of course, some
numbers have more than one decimal digit representation. For example, 1 =
0.999.... For this reason, we insist that in the below theorem, any time there
are two decimal representations to choose from, the one without an infinite tail
of 9’s must be chosen.

Theorem 10: Let f : R — R be continuous. Define the function g : N° — N
in the following way. For a,...,e € N, g(a,b,c,d, e) is obtained as follows:

1. Divide (—=1)%a by 10°. Thus, a gives a set of digits, b specifies where to
put the decimal point, and ¢ specifies a sign.

2. Let r = f((—=1)°a/10°); note r is a real number, maybe not an integer!

3. From r, discard all digits which are more than d places to the right of the
decimal point, so that there are exactly d digits kept after the decimal point.

4. Multiply the result by 10¢ and call the integer which results k. (Multi-
plying by 10? loosely means “erase the decimal point”)

5. If e = 0 and k > 0 then g(a,b,c,d,e) willbe k. If e =1 and k£ < 0
then g(a, b, c,d, e) will be —k. In any other case, g(a, b, c,d, e) will be 0. Loosely
speaking, inputing e = 0 says, “only return the result if it is positive”, and
inputing e = 1 says, “only return the result if it is negative, and if so, return its
absolute value”.

Suppose that ¢ is computable. Then there is a formula for f using the machinery
of Definition 2 together with subtraction, division, the floor function, and the
absolute value function.

Note: To be utterly pedantic, one ought to formally define “functions which
have formulas using machinery of Definition 2 together with subtraction, divi-
sion, the floor function, and the absolute value function”, in a way similar to
Definition 2. We omit the uninsightful details.

Proof: First, fix a,b,c and d in N. We claim that, with the approximation
correct up to at least d digits after the decimal point,

c a Ng(a,b,c,d,O)—g(a,b,c,d,l)
f((_l) 1_0b) = 104

Suppose f((—=1)°a/10°) > 0. Then g(a,b,c,d, 1) vanishes and g(a, b, c,d,0), by
definition, is f((—1)a/10%), correct to d digits after the decimal point, times
10%, so when we divide by 10¢ we get exactly f((—1)°a/10°) approximated to
d digits after the decimal point. If f((—1)a/10) < 0, the reasoning is very
similar.

24

For fixed a, b, ¢, we compute f((—1)a/10°) by first computing it to 0 digits
past the decimal point, then to 1 digit past, then to 2, and so on. This will of
course converge to f((—1)a/10°). But we do not have limits at our disposal (we
have not allowed ourselves to use them in our formulas). So instead we’ll simu-
late a limit of a sequence by first adding the first term, then adding the second
term minus the first, then the third minus the second, and so on. For notational
convenience, let gqp.(d,) denote g(a,b,c,d,e). Then, for fixed a,b,c¢ € N and
by the above remarks:

f ((_l)cliob) = gabc(oa 0) - gabc(o’ 1)

N i [gabc(i +1,0) = gape(i + 1,1) gabe(i, 0) = gave(is 1)
10i+1 10¢
i=0

Since we are assuming g is computable, by Theorem 7, in the above formula
for f((—1)°a/10"), we can replace each g with a subformula using just machin-
ery of Definition 2. So there exists a formula for for f((—1)°a/10%) using just
machinery of Definition 2 along with division and subtraction.

Finally, for r € R, to compute f(r) we’ll approximate r accurately to 0 digits
after the decimal point and compute f there; then repeat with an approximation
accurate up to 1 digit after the decimal point in r; then with 2; etc. This
works because we are assuming f is continuous. Generally, a formula which
approximates r validly up to i places after the decimal point is

N ia(n e L10°]
h(r,i) = (-1) T
One should think about this pictorially. Imagine holding the decimal point
stationary and shifting r to the left by i digits. That gives 10'r. Now we want
to chop off everything past the decimal point, and shift back to the right ¢ digits
by dividing by 10?. The chopping can be effected by taking the floor function—
assuming r is nonnegative. To generalize to arbitrary r, do the above process
to |r| and then fix the sign by multiplying by (—1)1+o(mIr1),
Thus, again using an infinite sum to simulate a limit,

oo

F(r) = f((r,0)) + Y _(f(h(ryi + 1)) = f(h(r,0))).

=0

Our remarks about f((—1)%a/10°) apply here, so we can transform this for-
mula into one using just machinery of Definition 2 along with division, subtrac-
tion, the floor function, and the absolute value function.]

The theorem provides some insight into the laboratory dilemma described
above. Say f(z) =1 when z = 0, f(z) = 0 elsewhere. Now suppose a scientist is
trying to evaluate f of the temperature (in Celsius) of an object. By misfortune,
the temperature is 0, but an initial reading only establishes it is within .1 degree
of 0. If we use the strategy in the theorem, it amounts to advising the scientist:

25

keep recalibrating the instruments to make more and more accurate measure-
ments, until the resulting estimation of f is as good as you like. Unfortunately,
since f is discontinuous at 0, it does not matter how well the instruments are
calibrated. The scientist will never be able to get the maximum error of her
estimate smaller than 1.

To close this section, we’ll point out that it would not be tremendously
difficult, using the ideas above, to generalize things to functions which take
multiple real arguments.

6 Conclusion

We set out originally to explore the problem of obtaining closed formulas for
classical computable functions. In order to attack this problem, it was necessary
first to formally explain what exactly this means. Having done this, we were able
to give a constructive proof that the computable functions have closed formulas.
This effort took us on a detour through the elements of computability theory,
and through a new formula-related characterization (the Guessing Lemma) of
the computable functions which we proved equivalent to the usual definition.

We then proceeded above and beyond the original goals and outlined how
the results can be extended to more general real-valued computable functions,
and, in a different direction, to functions that are not computable but are at
least within the arithmetical hierarchy.

Appendix: Proving a Function is Recursive

The purpose of this appendix is to provide, for the reader new to recursive
function theory, some insight into the Church-Turing thesis.

The Church-Turing thesis informally says that the primitive recursive func-
tions are precisely the functions for which there exist algorithms; or, alter-
natively, the functions that can be programmed onto an ideal computer. In
computer science, computability theory is usually introduced via the Turing
machine, a model of an ideal computer. This approach has the advantage that
(perhaps after experimenting for awhile with the flexibility of the Turing ma-
chine) it is “obvious” that Turing computable functions are exactly the functions
programmable onto a computer. One then proves that the Turing-computable
functions are precisely the recursive functions.

Unfortunately, a comprehensive introduction to Turing machines, followed
by a proof of equivalence with recursive functions, would take us miles too far
afield. Excellent treatments can be found in abundance, for example in Bilaniuk
[2] which is available for free online. In the meantime, we will console the reader
with some examples that should at least make the Church-Turing thesis sound
reasonable, if not clear. The reader will bear in mind that these examples
typically would show up as exercises in introductory computability texts.

26

For the reader’s convenience, here is the definition of the recursive functions,
repeated from the background section:

Definition: The computable functions (also called the recursive functions) are
defined inductively as follows:

1. The basic functions are recursive. These are the zero function O : N - N
defined by O(n) = 0; the successor function o : N — N defined by o(n) =
n + 1; and the projection functions defined, for all i,k € N, 0 < ¢ <k, by

7F NP 5 N (ng, e, np) & 0y

2. (Closure under Composition) If ¢ :C N¥* — Nis recursive and for 1 < i < k,
i :C N™ — N is recursive, then the function f :C N™ — N defined by

f(7) = P (7), ..., i (1))
is also recursive. Here we write 7 for ng, ..., ny,; this will be done frequently
throughout the paper, and will cause no confusion.

3. (Closure under Recursion) If g :C N* — N is recursive and h :C N¢+2 5 N
is recursive, then the function f :C NFt! — N defined by the recurrence

relation (7) i
Loy 9(@) if m =0,
f(it,m) = { (i, f(7i,m — 1), m — 1) otherwise

is recursive.

4. (Closure under Unbounded Minimization) Suppose g :C Nft! — N is
recursive. Define the function f :C N¥ — N by

f(z1,...,xp) = min{y|g(z1, ..., Tk, y) = 0 and g(z1, ..., 2k, 2) exists Vz < y},
whenever any such y exists. Then f is recursive.
Now to give some examples. We start by showing how addition, multiplica-
tion, and exponentiation are proven to be recursive.

Example A1: The functions +(a,b) = a + b, x(a,b) = ab, and exp(a,b) = a®
are recursive (where we define 0° to be 1).

Proof: First, observe that +, x, and exp can be defined by the following
recurrence relations:

)

)
x(a,0) =0
x(a,b+1) =a + x(a,b)

)
)

exp(a,b+ 1) = exp(a,d) - a.

27

To prove + is recursive, note that 7} (a) = a, o(a) = a+1, and 73 (a,b,c) =
b are recursive, by definition. We can compose o and 73 to see that (o o
73)(a,b,c¢) = b+ 1 is recursive. Now we can rewrite the recurrence relation for
+ as follows:

+(a,0) = 71 (a)
+(a,b+1) = (0 o 73)(a, +(a,b),b).

Why on earth do we do this, when it seems to just complicate matters? Because
this is exactly the format we need to apply closure under recursion! By closure
under recursion, + is indeed recursive.

Now define +3(a,b,c¢) = a +b. We claim +3 is recursive. This is just a
matter of rewriting it as +3(a, b,c) = +(7§(a, b, c), 73(a,b,c)). We just showed
+ is recursive, and 7}, 73 are recursive by definition, so indeed +3 is recursive.
Now we can use +3, and the basic function O(a) = 0, to rewrite the recurrence
relation for x:

x(a,0) = O(a)
X(aab + 1) = +3(a7 x(a, b)ab)

Again, at first glance this just muddies the waters, but looking at the definition
of recursive functions, we see this is exactly the form we need to apply closure
under recursion. By closure under recursion, X is recursive.

Continuing in this manner, define x3(a,b,c) = ab. Write Xx3(a,b,c) =
x(n3(a,b,c),73(a,b,c)) and conclude by closure under composition that X3
is recursive. Note the constantly 1 function 1(a) = 1 is recursive by writing
1(a) = 0(0O(a)). So, we can write

exp(a,0) = 1(a)
exp(a, b + 1) = x3(a, exp(a, b)a b),

and by closure under recursion we realize exp is recursive. []

What the above example demonstrates is that a lot of the work in these types
of proof is just a lot of acrobatics to make sure dimensions agree and to squeeze
various recurrence relations into the specific format required for closure under
recursion. The audience may wonder why we do not just save ourselves the
trouble and use a stronger closure under recursion statement for the definition
of recursive functions. This would indeed simplify the task of proving things are
recursive, but it would greatly hinder us from proving things about recursive
functions. For example, before being able to prove the Guessing Lemma, we
would have to prove a stronger version of Lemma 4. We forfeit some ease of
proving recursiveness in exchange for an easier time proving general theorems
about recursive functions. In fact, if we are willing to invoke the Church-Turing
thesis to prove things are recursive, we have not forfeited anything at all and
have, by a kind of sleight of hand, drastically reduced our workload?3!

3See the remarks in the section, “Background”

28

We showed + is recursive, so it is natural to want to show —(a,b) = a — b is
recursive. But this is not true! The reason is that recursive functions have to
have strictly nonnegative values. We do the next best thing and show —(a,b) =
|a — b| is recursive.

Example A2: The “absolute value subtraction function” —(a,b) = |a — b| is
recursive.

Proof: This is actually not as easy as one would think; one cannot immediately
mimic Example Al. We begin by proving

a—1ifa>0

SubtractOne(a) = { 0ifa=0

is recursive. To this end, define SubtractOne'(a, b) = SubtractOne(b). Now why
on earth do we pull this out of thin air? Because it turns out to be easy to get
a recurrence relation for SubtractOne’. Namely:

SubtractOne'(a,0) = 0
SubtractOne'(a, b + 1) = 73 (a, SubtractOne'(a, b), b).

The reader should take a moment to convince herself this is true. By clo-
sure under recursion, SubtractOne' is recursive. But we can immediately write
SubtractOne(b) = SubtractOne' (7} (b), 7} (b)), so by closure under composition,
SubtractOne is recursive. Now define

a—bifa>b

HalfSubtract(a, b) = { 0 otherwise

Why pull this function out of a hat? Because clearly —(a, b) = HalfSubtract(a, b)+
HalfSubtract(b, a), so if we can show HalfSubtract is recursive, we’re practically
out of the woods. But this is actually easy, just write

HalfSubtract(a,0) = a
HalfSubtract(a, b + 1) = (SubtractOne o 73)(a, HalfSubtract(a, b), b),

which in plain English is; “to half-subtract b + 1, first half-subtract b, then
half-subtract 1”. By closure under recursion, HalfSubtract is recursive. Then
since —(a,b) = +(HalfSubtract(a, b), HalfSubtract (72 (a, b), 7 (a,b))), the abso-
lute value subtraction function is indeed recursive.]

We are trying to give an idea how recursive functions encapsulate the intu-
itive notion of functions that can be programmed into a computer. Well, most
decent programming languages should have a way of checking if some statement
is true or false, and acting accordingly. The recursive analog is:

Example A3: The Kronecker delta function

lifa=5b
0 otherwise

5(a,b) = {

29

is recursive.

Proof: Note that d(a,b) = §(Ja — b|,0). Thus, define

lifa=0
0 otherwise.

IsZero(a) = {

We claim IsZero is recursive. Recall from the proof of example A2 that
SubtractOne(a) = a—1 if and only if a = 0, otherwise it equals a. So the differ-
ence between a and SubtractOne(a) is 1 if a is nonzero, 0 if @ = 0. Therefore,
IsZero(a) = |1 — |a — SubtractOne(a)||. Or, in the language of the definition of
recursive functions,

IsZero(a) = —(1(a), —(a, SubtractOne(a))).

By closure under composition repeatedly, IsZero is recursive. But then imme-
diately 6(a,b) = IsZero(—(a, b)) is recursive.

Incidentally, there is another, more amusing proof that IsZero is recursive:
remember in Example Al we specifically defined 0° = 1. But for any n > 0,
0™ = 0. So in fact IsZero(n) = exp(0,n) = exp(O(n), 7} (n)).

Once we have that IsZero is recursive, the recursiveness of § follows easily
using the above observation.]

Another feature of many good programming languages is the “FOR” loop.
An analog of a for loop is the following.

Example A4: Suppose f :C N¥t! — N and g :C N¥* — N are recursive, and
define h :C N¥* — N by h(7@) = fi’é) f(#@,4). Then h is recursive.

Proof: Define FirstFewTerms :C N¥+! — N by FirstFewTerms(ii, m) = 22151 f(@,9).
We claim FirstFewTerms is recursive. The recurrence relation we will use to
prove this is

FirstFewTerms(7,0) = 0
FirstFewTerms(7i,m + 1) = f(7, m) + FirstFewTerms(7i, m).

But if the skeptics insist we put this precisely in the form needed for closure
under recursion, then we first define tmp(7,b,¢) = b+ f(,¢). tmp is recursive
because we can write it

tmp(7, b, ¢) = +(mf 13 (7, b, ¢), f (7 T2 (7, b,), ..., mp T2 (7, b, ¢), mpt5 (7, b, €)))

and apply closure under composition repeatedly. Then we satisfy the skeptics
by writing

FirstFewTerms(#,0) = f(n¥ (), ..., 7f (7, (O o 7¥)(7)))
FirstFewTerms(7, m + 1) = tmp(7, FirstFewTerms(i, m), m).

So FirstFewTerms is recursive. Now we have h(77) = FirstFewTerms(7, g(7)).
This should suffice to convince anyone that h is recursive, but it is worth pointing

30

out that if one wanted to be thoroughly pedantic, one would write
h(f) = FirstFewTerms (¥ (), ..., 7% (77, g(7))

before appealing to closure under composition. []

We would like to wrap the appendix up by showing that the nth prime
function is recursive. This is a noble goal because it will provide an example of
usage of closure under unbounded minimization, which until now we have not
used. First, we need to show a couple of simpler functions are recursive:

Example A5: Define

. 1 if n is prime
IsPrime(n) = { 0 otherwise.
Define PrimeCount(n) to be the number of primes between 0 and n inclusive.
IsPrime and PrimeCount are recursive.

Proof: First we prove IsPrime is recursive. How do we check if a number is
prime? One way is to count the number of divisors. Thus, as an intermediate
step, define

1 if a divides b

ADividesB(a,b) = { 0 otherwise.

We claim ADividesB is recursive. One way to check if a divides b is to let
1 go from 0 to b and at each step add 1 if ai = b. Note we add 1 at most
once. A little more formally, we have ADividesB(a,b) = Z;’:O d(ai, b). It follows
from example A4 that ADividesB is recursive. Now, n is prime if and only if
the number of divisors of n between 0 and n inclusive is 2: 1 is a divisor,
n is a divisor, and there are no other divisors. Thus, we have IsPrime(n) =
8 (2,31 o ADividesB(i,n)). Again the recursiveness of IsPrime follows from
example A4. Finally, write PrimeCount(n) = > 1 IsPrime(i). Once again,
example A4 implies PrimeCount is recursive. []

Example A6: Define P(n) to be the nth prime (thus P(0) is undefined). P is
recursive.

Proof: We will now show how to use closure under unbounded minimization
to simulate a “brute force search”. One way to find the nth prime is to just
start checking every single number 4, in order, until we find the first ¢ such that
there are n primes between 0 and 7 inclusive. In other words, find the lowest
i such that PrimeCount(i) = n. But this is not the format that closure under
unbounded minimization requires. To get things in that format, define

1 if 4 is not the nth prime

IsNotNthPrime(n, i) = { 0 otherwise

It is not hard to see IsNotNthPrime(n, i) = |1 — IsPrime(7)d(n, PrimeCount(i))|.
So by liberally invoking prior examples and the definition of recursive, IsNotNthPrime

31

is recursive. Now in terms of IsNotNthPrime, our quest is to find the smallest
i such that IsNotNthPrime(n,7) = 0. But this is ezactly what closure under
unbounded minimization allows us to do! Applying closure under unbounded
minimization to IsNotNthPrime, P is recursive. []

Note what happens when we try to use unbounded minimization to find P(0)
the undefined “Oth prime”. We start checking numbers, asking each time, “Is it
not the case that this is not the Oth prime?”, i.e., “Is this the Oth prime”? We
stop when we get a positive answer... but there is no Oth prime, so we never
get a positive answer, and keep trying forever.

References

[1] H. P. Barendregt. The lambda calculus, volume 103 of Studies in Logic and
the Foundations of Mathematics. North-Holland Publishing Co.,
Amsterdam, revised edition, 1984.

[2] Stefan Bilaniuk. A problem course in mathematical logic. 2003. Freeware
mathematics text, Version 1.6, available at
http://euclid.trentu.ca/math/sb/pcml/welcome.html.

[3] Nigel Cutland. Computability. Cambridge University Press, Cambridge,
1980. An introduction to recursive function theory.

[4] Hartley Rogers, Jr. Theory of recursive functions and effective
computability. MIT Press, Cambridge, MA, second edition, 1987.

[5] Klaus Weihrauch. Computable analysis. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, Berlin, 2000.

32

