In this paper we examine the inverse problem of determining the amount of corrosion/disbonding which has occurred on the boundary of a single circular (or nearly circular) inclusion D in a two-dimensional domain Omega , using Cauchy data for the steady-state heat equation. We develop an algorithm for reconstructing a function which quantifies the level of corrosion/disbonding at each point on the boundary of D. We also address the issue of ill-posedness and develop a simple regularization scheme, then provide several numerical examples. We also show a simple procedure for recovering the center of D assuming that Omega and D have the same thermal conductivity.