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Abstract. We construct an algorithm that solves the problem described as
follows. Given an m× n sign pattern A, and real vectors ~r ∈ Rm and ~c ∈ Rn,

find an m×n matrix B with sign pattern A and row sums ~r and column sums

~c. We also answer the question of when such a problem has a unique solution
and give insight into the conditions which will allow for an integer solution to

the problem when ~r and ~c have integer entries.

1. Introduction

A sign pattern is a m × n array whose entries are +’s, −’s, or 0’s. Associated
with a sign pattern A is the class Q(A) of all m × n real matrices B such that
bij > 0 when aij = +, bij < 0 when aij = −, and bij = 0 when aij = 0. Q̂(A) is
the class of all m× n real matrices B such that bij ≥ 0 when aij = + or 0, bij ≤ 0
when aij = − or 0, and bij = 0 when aij = 0.

The main interest of this article is the problem P (A,~r,~c), where A is an m× n
sign pattern and ~r and ~c are vectors in Rm and Rn respectively. Defining e to be
a vector of 1’s as usual, a solution to P (A,~r,~c) is a m × n matrix B ∈ Q(A) with
row sum vector ~r and column sum vector ~c; that is, Be = ~r and eT B = ~c. A
weak solution to P (A,~r,~c) is a m×n matrix B ∈ Q̂(A) with row sum vector ~r and
column sum vector ~c; that is, Be = ~r and eT B = ~c.

In [1], Johnson et. al. characterized the problems P that admit a solution, so in
our article we will assume that we can easily determine whether a problem P has
a solution or not. However, Johnson et. al. left open the question of how a solution
to P can be constructed when one is known to exist. The focus of our article is to
answer this question.

The first step to answering this question is in fact already given in [1] and
[3]: Johnson et. al. showed in [1] that the problem P is equivalent to a special
case of feasible circulation problems in graph theory, and an algorithm for solving
general feasible circulation problems is given in [3].1 This implies that an equivalent
algorithm should exist for constructing a solution to P . The majority of our article
will be devoted to describing this algorithm in the language of linear algebra (thus
saving one the trouble of converting our problem into its equivalent graph theory
problem).
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1For technical details on how the problems are related, refer to [1] and [3].
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From the algorithm we deduce a number of interesting results regarding the
existence of integer solutions to a problem P and the uniqueness of a solution to
a problem P . For the interest of the reader, we discuss these results before we
introduce the algorithm.

2. Main results

It is obvious that not every problem P in which ~r and ~c have only integer elements
has an integer solution (a solution with only integer elements). For example, the
simple case where A is (

+ +
+ +

)
and ~r and ~c are both (1, 1)T cannot have an integer solution. However, we can see
easily that (

1 0
0 1

)
is a weak integer solution to the problem. Whether or not a problem with ~r and
~c having only integer elements will always have a weak integer solution is not so
obvious, but our first result answers this question.

Theorem 1. Assuming P has a solution, a problem P (A,~r,~c) has a weak solution
with integer elements if and only if all the elements of ~r and ~c are integers.

We have seen that a problem P with ~r and ~c having only integer elements does
not necessarily have an integer solution. A much broader question, then, is whether
or not such a problem necessarily has a rational solution. Our second result claims
that it does.

Theorem 2. Assuming P has a solution, a problem P (A,~r,~c) in which all the
elements of ~r and ~c are integers has a solution in which all of its elements are
rational numbers.

Since there is a solution with all of its elements rational numbers, it follows
directly that the solution can be multiplied by some integer N to give an integer
solution to an equivalent problem in which ~r and ~c have been scaled by N .

Corollary 1. If a solution exists for problem P (A,~r,~c), in which all the ele-
ments of ~r and ~c are integers, then there exists an integer N such that the problem
P (A,N~r,N~c) has a solution in which all of its elements are integers.

Finally, we ask the question of when a solution to a problem P is unique. In our
fourth result we claim that P either has one unique solution or it has an infinite
number of solutions. We characterize the problems P that have a unique solution
and, conversely, an infinite number of solutions.

Theorem 3. Assume a solution exists for problem P (A,~r,~c). There are an infi-
nite number of solutions to P if and only if there exists a set of positions (ij) =
{i1j1, i2j1, i2j2, i3j2, . . . , ikjk, i1jk} in A with at least 4 elements such that aij is
non-zero for all positions in the set. The solution is unique if and only if such a
set does not exist.
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We postpone the proofs of these theorems until section 6, after we have discussed
the algorithm. In the following section we introduce some definitions that will set
the stage for our algorithm, and in the two sections after that we describe the al-
gorithm and give a demonstration of how the algorithm is performed.

3. Preliminary definitions

Before we begin our formal description of the algorithm, it is necessary to intro-
duce the concept of a directed matrix link (we use “directed” here to differentiate
our term “matrix link” from the term “matrix link” defined in [2]), a link augmen-
tation operation, a residual array, and a residual array update operation.

Definition 1. Let C be a m× n matrix or array. A directed matrix link L(C) is
a set of positions of C defined in one of the following five ways:

(1) L(C) = {i11, i1j1, i2j1, i2j2, i3j2, . . . , ikjk, 1jk}, where ci11 and c1jk
> 0,

and cixjy > 0 if x = y and < 0 otherwise.
(2) L(C) = {i11, i1j1, i2j1, i2j2, i3j2, . . . , ik+1jk, ik+11}, where ci11 > 0 and

cik+11 < 0, and cixjy
> 0 if x = y and < 0 otherwise.

(3) L(C) = {1j1, i1j1, i1j2, i2j2, i2j3, . . . , ikjk, ik1}, where c1j1 and cik1 < 0,
and cixjy

< 0 if x = y and > 0 otherwise.
(4) L(C) = {1j1, i1j1, i1j2, i2j2, i2j3, . . . , ikjk+1, 1jk+1}, where c1j1 < 0 and

c1jk+1 > 0, and cixjy < 0 if x = y and > 0 otherwise.
(5) L(C) = {i1j1, i2j1, i2j2, i3j2, . . . , ikj1}, where ci1j1 > 0 and cikj1 < 0, and

cixjy
> 0 if x = y and < 0 otherwise.

We call a link defined the first way a “type 1 link”, a link defined the second way a
“type 2 link”, and so on. Throughout this article, we will refer to a directed matrix
link L(C) simply as a link on C. For example, if we let C be the 4× 4 matrix

0 1 −1 1
1 2 −1 −1
−1 −1 −1 1
1 −1 1 1


then the set of positions {21, 22, 12} is a type 1 link, the set of positions {21, 22, 32,
31} is a type 2 link, the set of positions {13, 23, 22, 32, 31} is a type 3 link, the set
of positions {13, 23, 22, 12} is a type 4 link, and the set of positions {22, 24, 44, 42}
is a type 5 link.

Definition 2. Let B and C be m × n matrices, x be a real number, and L(C) be
a link on C. A link augmentation operation redefines the elements of B in the
following way:

bij =

{
bij + x, if cij > 0;
bij − x, if cij < 0,

for all positions ij in L(C).

If we perform this operation we say that we augment B by x at the positions of L(C).
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Definition 3. A m × n residual array is a m × n array with real numbers in its
first row and first column, and ordered pairs in positions not in the first row or
first column. For each ordered pair, the first element is nonnegative and the second
element is nonpositive.

For example, 
0 2 4 −3
−2 (+1,−1) (2,−1) (+1,−4)
3 (0, 0) (+2.5, 0) (0,−1)
π (+3,−1) (+1,−1) (0, 0)


is a 4× 4 residual array.

To specify a position of an element in a residual array R we either use the notation
ij, which we call the general position, or the notation ±ij, which we call the specific
position. The general position ij gives the numerical value of the element at ij if ij
is in the first row or column, and gives the ordered pair at ij if ij is not in the first
row or column. The specific position ±ij gives the numerical value of the element
at ij if ij is in the first row or column (in this case we use + to denote a positive
value and − to denote a negative value), and gives the first element of the ordered
pair at ij if + precedes ij or gives the second element of the ordered pair at ij
if − precedes ij.

Recall that a directed matrix link is a set of positions. A link on a residual array
R is defined the same way as a link on a regular matrix, except that each element
in the link is a specific position of R. For example, using the residual array given
above,

{+31,+33,+13}

is a type 1 link where r+31 = 3, r+33 = 2.5, and r+13 = 4,

{+22,−23,+43,−42}

is a type 5 link where r+22 = 1, r−23 = −1, r+43 = 1, and r−42 = −1, and

{+23,−22,+42,−43}

is a type 5 link where r+23 = 2, r−22 = −1, r+42 = 3, and r−43 = −1.

Definition 4. Let B and C be m×n residual arrays, x be a real number, and L(C)
be a link on C. A residual array update operation redefines the elements of B in
the following way:

bij =


bij − x, if c±ij > 0 and i or j = 1;
bij + x, if c±ij < 0 and i or j = 1;
bij − (x, x) if c±ij > 0 and i, j 6= 1;
bij + (x, x) if c±ij < 0 and i, j 6= 1,

for all positions ±ij in L(C).

If we perform this operation we say we update B with L(C) and x. This concludes
our discussion of the preliminary definitions necessary to describe the algorithm.



FINDING A MATRIX OF GIVEN SIGN PATTERN AND LINE SUMS 5

4. The algorithm

The entire algorithm is performed in three stages, each of which involve several
steps. The parameters of the algorithm are simply the parameters of the problem:
the m× n sign pattern A, the m× 1 row sum vector ~r and the n× 1 column sum
vector ~c. The algorithm is described in full in this section. An example is included
in the following section, and the reader may find it helpful to follow the example
as he reads through this section.

Initialization stage:

1: Create a (m + 1) × (n + 1) zero matrix U , called the intermediate
matrix. Define S as the submatrix “block” of U , S = U [α|β] where
α = {2, . . . ,m + 1} and β = {2, . . . , n + 1}, that is, S to be the sub-
matrix of U formed by the intersection of rows α and columns β.

2: Create a (m + 1)× (n + 1) residual array V with elements defined as
follows:

(1) v11 = 0,
(2) vi+1,1 = ri for all i,
(3) v1,j+1 = cj for all j,
(4) vi+1,j+1 = (+2M, 0) for all aij = +, where M is an integer

defined as follows:

M >

m∑
i=1

|ri|+
n∑

j=1

|cj |,

(Note that M is just an arbitrarily large number that is large
enough to accommodate a solution.)

(5) vi+1,j+1 = (0,−2M) for all aij = −, where M is as above,
(6) vi+1,j+1 = (0, 0) for all aij = 0.

Call this the residual array.

Line sum adjustment stage:

3: Find an i such that vi1 6= 0. If no such i exists go to step 9, otherwise
proceed.

4: Find a type 1–4 link on V that contains the general position i1. Call
this link L. If no such link can be found, terminate the algorithm;
there is no solution.

5: Define x to be the smallest of the absolute values of the elements of
V at the specific positions of the link L.

6: Augment x on U at the positions of link L.
7: Update V with x and L.
8: If vi1 = 0 go to step 3, otherwise go to step 4.
9: Find a j such that v1j 6= 0. If no such j exists go to 15, otherwise

proceed.
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10: Find a type 1–4 link on V that contains the general position 1j. Call
this link L. If no such link can be found, terminate the algorithm; there
is no solution.

11: Define x to be the smallest of the absolute values of the elements of
V at the specific positions of the link L.

12: Augment x on U at the positions of link L.
13: Update V with x and L.
14: If v1j = 0 go to step 9, otherwise go to step 10.

Sign adjustment stage:

15: Find a position ij, where i, j 6= 1, such that the sign of uij does not
correspond to the sign of ai−1,j−1. If no such ij exists then terminate
the algorithm; S is a solution. Otherwise proceed.

16: If ai−1,j−1 = +, find a link on V with specific position +ij. Other-
wise if ai−1,j−1 = −, find a link on V with specific position −ij. Call
this link L. If no such link exists, terminate the algorithm; there is no
solution.

17: Define x to be a positive number less than the smallest of the absolute
values of the elements of V at the specific positions of link L.

18: Augment x on U at the positions of link L.
19: Update V with x and L. Go to step 15.

5. A demonstration and an explanation

The algorithm is relatively simple to perform if understood, but its explanation
on paper is complicated. Thus, to give the reader a better understanding of how
to perform the algorithm, we include in this section a demonstration. The reader
will find it helpful to consider the steps of the algorithm as he or she follows our
demonstration. It will also be helpful if the reader performs the algorithm along
with our demonstration. We will now demonstrate how to use the algorithm to
solve P (A,~r,~c), where A is the 3× 3 sign pattern+ − +

0 + +
+ − −


and ~r = (4, 3,−1)T and ~c = (4, 0, 2)T .

Initialization stage:

First we initialize the matrix U and V as follows:

U =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 and V =


0 4 0 2
4 (+50, 0) (0,−50) (+50, 0)
3 (0, 0) (+50, 0) (+50, 0)
−1 (+50, 0) (0,−50) (0,−50)


We have chosen M here to be 25, but M can be arbitrarily large as long as it meets
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the condition described in section 4.

Line sum adjustment stage:

We see that v21 6= 0 so we find a type 1—4 link on V that contains the position 21.
L(V ) = {+21,+22,+12} is such a link (type 1). Now we set x to be the smallest of
the absolute values of the elements of V at the specific positions of the link L(V ).
So in this case, x = 4. Now we augment x on U at the positions of L(V ) and
update V with x and L(V ). So

U =


0 4 0 0
4 4 0 0
0 0 0 0
0 0 0 0

 V =


0 0 0 2
0 (+46,−4) (0,−50) (+50, 0)
3 (0, 0) (+50, 0) (+50, 0)
−1 (+50, 0) (0,−50) (0,−50)


Now we see that v31 6= 0 so we find the type 1 link L(V ) = {+31,+34,+14}. In
this case we set x = 2. Again we augment U and update V .

U =


0 4 0 2
4 4 0 0
2 0 0 2
0 0 0 0

 V =


0 0 0 0
0 (+46,−4) (0,−50) (+50, 0)
1 (0, 0) (+50, 0) (+48,−2)
−1 (+50, 0) (0,−50) (0,−50)


Still v31 6= 0 so we find another link, the type 2 link L(V ) = {+31,+33,−43,−41}.
We set x = 1 and we augment U and update V as usual.

U =


0 4 0 2
4 4 0 0
3 0 1 2
−1 0 −1 0

 V =


0 0 0 0
0 (+46,−4) (0,−50) (+50, 0)
0 (0, 0) (+49,−1) (+48,−2)
0 (+50, 0) (+1,−49) (0,−50)


We see that all vij = 0, where i or j = 1, so we may move on to the sign adjustment
stage. Notice that the submatrix S of U is indeed a weak solution to the problem.

Sign adjustment stage:

We see that u23 = 0 while a12 = −. So we find a type 5 link that includes u−23.
The link L(V ) = {+24,−23,+43,−44} is such a link. We define x to be less than
the smallest of the absolute values of the elements of V at the positions of L(V ).
The smallest of the absolute values is 1 (v+43 = 1) so we can set x = 0.5. We
augment and update U and V as usual.

U =


0 4 0 2
4 4 −0.5 0.5
3 0 1 2
−1 0 −0.5 −0.5


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V =


0 0 0 0
0 (+46,−4) (0.5,−49.5) (+49.5,−0.5)
0 (0, 0) (+49,−1) (+48,−2)
0 (+50, 0) (+0.5,−49.5) (+0.5,−49.5)


Finally we see that u42 = 0 while a31 = +. So we find the link L(V ) = {+42,−44,
+ 24,−22} and set x = 1. We augment and update U and V to obtain

U =


0 4 0 2
4 3 −0.5 1.5
3 0 1 2
−1 1 −0.5 −1.5



V =


0 0 0 0
0 (+47,−3) (0.5,−49.5) (+48.5,−1.5)
0 (0, 0) (+49,−1) (+48,−2)
0 (+49,−1) (+0.5,−49.5) (+1.5,−48.5)


and we see that the submatrix S of U is a solution to the problem. Note that the
first column of U represents the row sums and the first row of U represents the
column sums, that is, ui+1,1 = ri and u1,j+1 = cj . This completes our demonstra-
tion of the algorithm. Also note that the algorithm is not deterministic, that is,
we would have obtained a different solution had we chosen different links at each
of the steps.

To begin our explanation of why this algorithm works, we first remark that the
elements in the first row and first column of V represent how much the correspond-
ing elements in the first row and first column of U must be modified such that the
first column of U represents ~r and that the first row of U represents ~c. The elements
not in the first row and first column of V represent how much the corresponding el-
ements in the submatrix block S of U may be modified such that S is “weakly” the
same sign pattern as A, that is: uij ≥ 0 (respectively ≤ 0, = 0) when ai−1,j−1 = +
(respectively −, 0). Because of the way a link is defined, it is easy to verify that
at every step of the algorithm the submatrix block S is always “weakly” the same
sign pattern as A. It is also easy to see that at any stage of the algorithm, if there
is an element in the first row or column of V that is not zero, or an element in the
submatrix S of U that does not have the same sign as its corresponding element
in A, and a link containing the position of this element cannot be found, then the
problem certainly cannot have a solution. We can now prove that the algorithm
actually produces a solution.

Lemma 1. If a weak solution to problem P exists, then at the end of the line sum
adjustment stage, S is a weak solution to P .

Proof. Note that in each loop of the line sum adjustment stage two of the elements
in the first row and column of V approach zero, i.e. the line sums of the submatrix S
approach ~r and ~c. Since a solution exists, it is sufficient to show that the algorithm
will reduce all elements in the first row and column of V to zero in a finite number
of steps.



FINDING A MATRIX OF GIVEN SIGN PATTERN AND LINE SUMS 9

Let ij be a position in the first row or column of V such that vij 6= 0. The
algorithm finds a link L containing position ij, augments U by a real number x on
link L, and then updates V with x and L. Because x is defined as the minimum of
the absolute values of the elements at the positions of L, it is easy to verify that
after the update either vij is zero or the positions of L are no longer a link. Since
there are a finite number of links containing vij , there must also be finitely many
steps before vij is reduced to zero. �

Theorem 4. If a solution to problem P exists, then at the end of the algorithm, S
is a solution to problem P .

Proof. It is easily verified that after each loop in the sign adjustment stage at least
one element in S that previously did not have the correct sign is made to have the
correct sign, without changing the signs of other elements in S that already have
the same sign as their corresponding elements in A, and without changing the row
and column sums of S. Since S is already a weak solution at the end of the line sum
adjustment stage, it is sufficient to show that the sign adjustment stage corrects all
the signs in a finite number of steps. But there are a finite number of elements in
S so there are also a finite number of steps to the sign adjustment stage. �

6. Proof of main results

Now that we have discussed our algorithm, our main results are derived naturally
from it. We devote this section to proving the theorems in section 2.

Proof of theorem 1. It is obvious that if a problem P (A,~r,~c) has a weak integer
solution then the elements of ~r and ~c are all integers. To prove the converse, we
note that in the line sum adjustment stage, if the elements of ~r and ~c are all integers
then a non-integer will never be augmented on U . Because of this fact and lemma
1, a problem P (A,~r,~c) with the elements of ~r and ~c integers must have a weak
integer solution. �

Proof of theorem 2. Unless ~r or ~c has elements that are non-rational numbers,
we can always define x to be a rational number at any stage of the algorithm, so we
are never forced to augment a non-rational number on U . Since at the end of the
algorithm, the submatrix S of U is a solution, there must exist a rational solution
when the elements of ~r and ~c are all integers. �

Proof of theorem 3. Let B be a solution to P . Let V be the residual array that
would be obtained in the final step if B were constructed from the algorithm. It is
easy to verify that if a set of positions as described in theorem 3 exists in B, then
a type 5 link L(V ) exists in V . We can then augment a real number x on B at the
positions of L(V ) and still retain a solution. Since there are an infinite number of
ways to choose x (recall that x is defined as a positive real number less than the
smallest of the absolute values of the elements of V at the specific positions of link
L) while still retaining a solution, there are an infinite number of solutions.

Now suppose that a set of positions as described in the theorem does not exist
in B. It is easy to verify that no type 5 link exists in V . If a type 5 link cannot
be found in V then there is no way to change the elements of the solution without
changing the row and column sums, so the solution is unique. �
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7. Concluding remarks and possible directions for further study

We have seen that our algorithm answers some interesting questions regarding
the existence of integer solutions and the uniqueness of solutions in general to a
given problem P . We conclude by posing a number of questions that the reader
may find interesting and deserving of further research.

Expanding on corollary 2, we ask: what is the smallest integer N such that a
problem P (A,N~r,N~c), where all the elements of ~r and ~c are integers, has an integer
solution? We remark that an obvious upper bound exists for N , that is N ≤ 2mn.
This is obvious because we have a weak integer solution at the end of the line sum
adjustment stage of the algorithm and there are at most mn elements whose signs
must be changed in order to produce a solution. Thus constructing a solution takes
at most mn iterations of the sign adjustment stage (since each iteration makes at
least one previously incorrect sign correct). Suppose we set x each time to be half
the minimum of the absolute values of the elements of V at the positions of the
link. It is easy to see that the largest denominator for any element in the solution
that can be generated this way is 2mn, so N cannot be greater than 2mn. This is,
of course, a very bad upper bound because it does not take into account the nature
of A, ~r, or ~c at all. It would be interesting to see if better bounds for N can be
defined, and even more interesting to determine when N = 1, i.e. when the problem
has an integer solution.

In theorem 3 we saw that a problem either has a unique solution or an infinite
number of solutions and the proof of it was relatively straightforward. A much
more difficult question involves, once again, the existence of integer solutions. We
ask: when does a problem P have a unique integer solution? And more generally
we ask: how may we determine the size of the set of integer solutions to a problem
P?

Finally, we remark that the worst-case efficiency of our algorithm is nonpoly-
nomial because the maximum number of possible links in an m × n matrix is∑mn

i=3

(
mn
i

)
, so obviously the maximum number of iterations of the algorithm does

not grow as a polynomial function of mn. However, because our problem’s graph
theory equivalent is only a special case of the general feasible circulation problem,
we expect our algorithm to have a better efficiency than the algorithm for solv-
ing feasible circulation problems given in [3]. As such, our algorithm may find
applications in computer science and optimization problems.
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