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A problem due to Martin LaBar is to find a 3x3 magic square with 9 distinct
perfect square entries or prove that such a magic square cannot exist(LaBar [1]).
This problem has been tied to various domains including: arithmetic progres-
sions, rational right triangles, and elliptic curves(Robertson [2]). However, there
are some interesting properties that can be derived without ever leaving the do-
main of magic squares. I will assume that a solution exists and prove properties
of such a solution. Any solution must have the form:
a2 b2 c2

d2 e2 f2

g2 h2 s2

Let M denote the magic number. Hence M = the sum of each row, column, or
main diagonal. We know from Gardner [3] that M must equal three times the
middle square, so M = 3e2.
Let t = the greatest common divisor of a2, b2, c2, d2, e2, f2, g2, h2 and s2.
If t 6= 1 then t is a square, thus we can divide all entries by t to produce a new
solution with a smaller magic number(M/t). For this reason, it will be assumed
throughout this paper that the entries are relatively prime(t = 1).

Theorem 1.1 All entries of the magic square must be odd.

Proof: Using the fact that the the entries on the left side of the square must
sum to M we get:
a2+d2+g2 = M = 3e2. Hence a2+g2 = 3e2−d2. Thus a2+g2 ≡ 3e2−d2(mod 4)
With e odd and d even, we have a2 + g2 ≡ 3− 0 ≡ 3(mod 4). e even and d odd
gives a2 + g2 ≡ 0 − 1 ≡ −1 ≡ 3(mod 4). This is impossible since a2 + g2 ≡ 0
or 2(mod 4). Therefore, e and d must have the same parity. Both e and d odd
gives a2 + g2 ≡ 3 − 1 ≡ 2(mod 4). Which implies that a and g must be odd.
Both e and d even gives a2 + g2 ≡ 0− 0 ≡ 0(mod 4). Which implies that a and
g must be even. Thus a ≡ g ≡ e ≡ d(mod 2).

Arguing in a similar fashion for the other sides of the square we find that:
a ≡ b ≡ c ≡ d ≡ e ≡ f ≡ g ≡ h ≡ s (mod 2). Thus, if any element is even they
are all even, contradicting the fact that the elements are relatively prime. Hence,
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all entries are odd. �

From all rows, columns and main diagonals that pass through the center of
the square we get the following:
a2 + e2 + s2 = d2 + e2 + f2 = b2 + e2 + h2 = g2 + e2 + c2 = 3e2. Hence
a2 + s2 = d2 + f2 = b2 + h2 = g2 + c2 = 2e2

We can now prove the following theorem:

Theorem 1.2 The only prime divisors of e are of the form p ≡ 1(mod 4).

Proof: We just need to show that no prime p ≡ 3(mod 4) can divide e. We
use the fact that the ring of Gaussian integers Z[i] is a Unique Factoriza-
tion Domain(UFD). Factoring the left side of a2 + s2 = 2e2 in Z[i], we get
(a + si)(a− si) = 2e2. Given an odd prime p ∈ Z, then p is prime in Z[i] if and
only if p ≡ 3(mod 4)(See Lemma 1.1 in the Appendix). Thus, assume we have
a p such that p ≡ 3(mod 4) and p | e. Then we must have either p | (a + si)
or p | (a − si). Say p | (a + si), then a + si = pk and by complex conjugation
a− si = pk = pk. Hence p | (a− si). But then p must also divide their sum and
difference:
p | 2si, p | 2a. Hence p | s, p | a since p is odd and real.
Similarly, p | d, p | f , p | b, p | h, p | g, p | c. Hence, p divides every entry which
is impossible. �

Theorem 1.3 If a prime p ≡ 3, 5(mod 8) divides a non-center entry then p
also divides the center and the other entry in that line.

Proof: Without loss of generality we prove the result for the a, e, s diagonal. We
use the fact that the ring Z[

√
2] is a UFD. Given an odd prime p ∈ Z, then p is

prime in Z[
√

2] if and only if p ≡ 3, 5 (mod 8)(See Lemma 1.2 in the Appendix).
a2 + s2 = 2e2. Hence a2 = −(s2 − 2e2).
We can factor the right side of this equation in Z[

√
2] to get:

a2 = −(s + e
√

2)(s− e
√

2)
If p | a and p ≡ 3, 5(mod 8) then either p | (s + e

√
2) or p | (s − e

√
2). Say

p | (s + e
√

2), then s + e
√

2 = pk, and by conjugation s − e
√

2 = pk. Hence
p | (s− e

√
2). Thus p divides their sum and difference:

p | 2s, p | 2e
√

2. Hence p | s, p | e since p is odd and rational. �

Corollary 1.1 No prime p ≡ 3(mod 8) divides any entry.

Proof: Say p divides some non-center entry, then by Theorem 1.3, p divides e. But from
Theorem 1.2 we know that p cannot divide e since p ≡ 3(mod 8) ⇒ p ≡ 3(mod 4). �

Gardner [3] has shown that given any 3x3 magic square made up of distinct pos-
itive integers, there are three positive integers x, y, z so that the magic square
can be written in the form:

x + y + 2z x x + 2y + z
x + 2y x + y + z x + 2z
x + z x + 2y + 2z x + y
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Looking at this we quickly see that d2 + h2 = 2c2 and similar relations for the
other corner entries. The relation can be stated as: double a corner entry equals
the sum of the two middle-side entries that are not adjacent to the corner. We
can now prove the following:

Theorem 1.4 No prime p ≡ 5(mod 8) divides a middle-side entry.

Proof: Without loss of generality, let the middle-side entry be d2. Again, we
use the fact that the ring Z[

√
2] is a UFD. Given an odd prime p ∈ Z, then p is

prime in Z[
√

2] if and only if p ≡ 3, 5 (mod 8)(See Lemma 1.2 in the Appendix).
d2 + h2 = 2c2. Hence d2 = −(h2 − 2c2).
We can factor the right side of this equation in Z[

√
2] to get:

d2 = −(h + c
√

2)(h− c
√

2)
If p | d and p ≡ 5(mod 8) then either p | (h + c

√
2) or p | (h − c

√
2). Say

p | (h + c
√

2), then h + c
√

2 = pk and by conjugation h − c
√

2 = pk. Hence
p | (h− c

√
2). Thus p divides their sum and difference:

p | 2h, p | 2c
√

2. Hence p | h, p | c since p is odd and rational. Since p | h we
can use the same argument to show that p | f , p | a. But then, since p | f , we
can use the same argument again to show that p | b, p | g. p divides both a and
s, so p must also divide e. Hence p divides all entries, which is impossible. �

Theorem 1.5 If a prime p ≡ 3(mod 4) divides a corner entry then it divides
the two middle-side entries that are not adjacent to the corner.

Proof: Without loss of generality, let the corner entry be c2. Again, we use the
fact that the ring of Gaussian integers Z[i] is a UFD. Factoring the left side of
d2 + h2 = 2c2 in Z[i], we get (d + hi)(d− hi) = 2c2. If p ≡ 3(mod 4) then p is
prime in Z[i](See Lemma 1.1 in the Appendix). Thus if p | c and p ≡ 3(mod 4)
then either p | (d + hi) or p | (d − hi). Say p | (d + hi), then d + hi = pk, and
by conjugation d − hi = pk. Hence p | (d − hi). Thus p divides their sum and
difference: p | 2d, p | 2hi. Hence p | d, p | h since p is odd and real. �

All of these properties taken together severely restrict the possible placement
of primes that are not of the form p ≡ 1(mod 8). Given these restrictions, one
might conjecture that if there is a solution, then all prime divisors of all entries
are of the form p ≡ 1(mod 8). This would greatly reduce the number of possi-
bilities. It would also be interesting to disprove this conjecture by proving the
opposite; namely, that any solution must have at least one entry with prime
divisor p ≡ 5, 7(mod 8).

APPENDIX

We need to know when an odd prime p ∈ Z is also prime in the extensions Z[i]
and Z[

√
2]; the following two lemmas answer this question completely.

Lemma 1.1 Given an odd prime p ∈ Z:
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p ≡ 3(mod 4) ⇔ p prime in Z[i]

Proof: Z[i] is a UFD.
⇒
Given p ≡ 3(mod 4). If p composite in Z[i] then p has a factorization p = αβ
with N(α) > 1, N(β) > 1. Taking the norm of both sides we get p2 = N(α)N(β).
p2 cannot divide N(α) or N(β) since this would imply N(β) = 1, N(α) = 1 re-
spectively. Hence N(α) = p, N(β) = p. From the former we get p = N(α) = x2 + y2

for some x, y ∈ Z. Thus p ≡ 0, 1, 2(mod 4) which is a contradiction. �
⇐
Given p prime in Z[i]. If p ≡ 1(mod 4) then the equation x2 ≡ −1(mod p) has
a solution. Hence x2 + 1 = kp. Factoring in Z[i] we get (x + i)(x − i) = kp.
p is prime, so it must divide one of the factors and by complex conjugation it
divides both. Therefore p divides their difference:
p | 2i
This is impossible since p is odd and real(Beukers [4]). �

Lemma 1.2 Given an odd prime p ∈ Z:

p ≡ 3, 5(mod 8) ⇔ p prime in Z[
√

2]

Proof: Z[
√

2] is a UFD.
⇒
Given p ≡ 3, 5(mod 8). If p composite in Z[

√
2] then p has a factorization

p = αβ with |N(α)| > 1, |N(β)| > 1. Taking the norm of both sides we
get p2 = N(α)N(β). p2 cannot divide N(α) or N(β) since this would imply
N(β) = 1, N(α) = 1 respectively. Hence N(α) = ±p, N(β) = ±p. From the for-
mer we get p=±N(α) = ±(x2 − 2y2) for some x, y ∈ Z. Thus p ≡ 0, 1, 2, 6, 7 (mod 8)
which is a contradiction. �
⇐
Given p prime in Z[

√
2]. If p ≡ 1, 7(mod 8) then the equation x2 ≡ 2(mod p) has

a solution. Hence x2−2 = kp. Factoring in Z[
√

2] we get (x+
√

2)(x−
√

2) = kp.
p is prime, so it must divide one of the factors and by conjugation it divides
both. Therefore p divides their difference:
p | 2

√
2

This is impossible since p is odd and rational. �
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