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Abstract

Modular curves of the form Xo(N) are intrinsically interesting curves to
investigate. They contain a wealth of information and cross over the
boundaries of geometric, algebraic, and analytic mathematics. We set out
to compute al of the information for a specific family of related modular
curves, namely Xo(N) for those integers N dividing 36. In this paper, we
work out the parameters for the curves, the coordinates of the important
points in relation to those parameters, and then we find equations for the
important maps between the curves. Also, since X(36) has genus one,
and therefore has a natural group structure, we include a brief section on
the subgroup generated by its cusps.

1 Introduction

In order to begin to understand the properties of amodular curve like Xo(N), itis
imperative to have a good working model for the curve. In this context, this means
having a specific set of equations for describing the curve. So we will be selecting
specific functions on each of the curves and then using the properties of the curvesto find
equations relating the functions. This of course begs the question “If there are many
choices for such amodel, what criteria make a given model ‘ good’ ?’

One of the main desired qualitiesis that the selected functions are completely supported
on aspecific kind of specia points of the modular curve, called the cusps. This means
that we choose our parameters to be functions which have zeros and poles only at the
cusps. Thiswas possible to do in every case observed in this study. Another important
feature of the model isto be able to explicitly state formulae for the different naturally
arising maps between the curves. These formulae are exceedingly helpful in beginning to
understand the relationships between the different curves.

However, before we delve into these concepts, we should define these terms for the sake
of completeness.



2 Overview of the Basics

The upper half plane of C, most often denoted as H ={x +iy : x [ (—00,0),y [J(0,)} , is
the most fundamental starting point for work with modular functions. The modular group
SL,(Z), which isagroup under matrix multiplication, acts on H in avery specific manner
which makes it possible to define modular functions f on H.

SL,(Z) is defined by:

b
aly= & Bwith ad-bc=1and a,b,c,d0Z (2.2)
© dff
and I =SL,(Z) actson H by:
for zOH, % az+b 2.2)
drj cz+d

Note that for y(c) we take thisto be defined as the limit as z goesto infinity of y(z).
az+b_a
cz+d

Thatis, y(®)= |im Y@= |im and y(c) =0 if c=0.
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For any two elements x (1H andy O H , we say that x isequivalent toy modulo I,
denoted x ~y modulo I, if there exists some yOI' suchthat y(x) =y. Thisiseasly

seen to be an equivalence relation and the proof isleft to thereader. Thisisthe I -
equivalence class of z, denoted I'z.

Example2 1
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Let y= H 5 Clearly, yOT as2+1-1*1=1. Also ()_1—+2i'_3—;’I Therefore,

weseethat i ~ 37 moduloSL 5 (Z).

A modular function f is then a function on H which respects this group action seenin
equation 2.2. This means that
OyOrandOzOH, f(y(2) = f(2 (2.3)

If we then take H and mod out by the group action I, then we get the quotient space
denoted as "% . Formally, "% isthe set of I -equivalence classes {Fz:zOH}. A

fundamental domain of "% , cal it F, is particularly useful for visualizing what the
guotient looks like.

From [K] we can seethat if G isany subgroup of I, then Fg is called a fundamental
domain of Gif it satisfies the following two criterion:



1. If any two points are equivalent under G, then they must be the same point
in Fg or they both lie on the boundary of Fe.
2. If z; isany point in H, then there exists some point z; in Fg such that z;~z,,

One such fundamental domain for the action of SL,(Z) is shown in Chapter 3 of [K] to be
F={zDH:—%sRezs%,|z|2]} (2.4)
which looks like
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Since we haveto allow for there to be two distinct points, both on the boundary of Fg, to
be equivalent, it is reasonable to view the two boundaries as being pulled towards each
other and being glued together. Thisisnot just an intuitive process, but results from the
fact that under the group action of SL»(Z)

1
D' %z)=z+1 (2.5)
0 15
Similarly, the lower boundary is glued to itself viathe operation
0 -1 -1
zZ)=— 2.6
1 o= (26)

All of this resultsin something resembling the surface of a sphere with alittle hole poked
inthetop of it. Itishelpful to visualize the lines 2x+1=0 and 2x-1=0, from the picture
above of F, wrapping around the y-axis and sticking together. The semicircular boundary
at the bottom is then glued to itself. The resulting spaceis of H modulo I isdefined to
be X(1). Thus,

X(1) = '%_ (2.7)

Similarly, we can also look at I(N), where



Mo(N) = gﬁ Z%DI‘:CEOmOd(N)E (2.8)

It is straightforward to verify that I'o(N) isasubgroup of " . Note that since I(N) isa

subgroup of I , elements that used to be equivalent by ' may no longer be equivalent by
c(N). Anaogousy, we define Xo(N) to be the quotient space resulting from H modulo

the group action from IC(N)' That is
Xo(N) = r 29
O( ) H/O(N) (2.9)

The genus of the curve Xo(N) can best be described using topological ideas. Xo(N) can
be viewed as a surface over H resembling the surface of a sphere, in which case, the
genus of Xo(N) isthe number of holesthat go al the way through the sphere. A genus
zero curve would resemble the surface of a sphere, while a genus one curve would
resemble the surface of atorus. Note that even though Xo(N) clearly looks like a surface
it is customary to refer to it asa complex curve. Thisisbecauseit really isatwo
dimensional surface over R, but it isonly a one dimensional curve over C and we are
working over H which is asubset of C by definition.

The cusps of X(N) are points that are added to Xo(N) in order to fill in the holes that are
init. Notethe holesreferred to here are not the same as the holes in the above
description of genus. They are more like little punctures in the surface of sphere than
they arelikethe hole in atorus. Recall that in constructing the quotient X (1) from H, it
was necessary to fill in the one missing puncture holein order for X (1) to look like the
surface of a sphere. This hole can be seen as coming from the fact that there was no
upper boundary to the fundamental domain F. Then we throw in “the cusp at infinity” to
fill in that hole and we have a smooth sphere. That works finefor X(1), but Xo(N) has
additional puncture holesthat need to befilled in aswell. For the extra cusps, we simply
extend the action of I to the rational numbers on the real axis of the complex plane.

Note, under the full modular groupl” al the rational numbers were all equivalent to
infinity as can be seen in the following example. Since they were al a part of one
equivalence class for an element of I, we have only added new elements (i.e. the

H i H
necessary cusps) to %_ 0’ but nothing new was added to /F :

Example 2.2
For any rational number %in lowest terms, with q # O, then we know from the

Chinese Remainder Theorem that there exist two integers, call them r and s, such that

rp+sq=1. Thereforeweseethat y= %’ rsgisin SL,(Z) and that y(c) = %. This
U

directly implies that o ~ g modulo SL»(Z) and also that o ~g modulo

Mo(q) asyisalsoclearlyinlg(q) .



Example 2.3

[0 O
For amore concrete example, welook at y = D Itisclear that yOII' and that
1o

y(0) =0, so o ~ 0 modulo ' . However, it isstrai ghtforward to show (and the
reader isinvited to do so) that for N>1, thereisno yUOT(N) with the property that

y() =0.

The number of cusps necessary to fill in all the holes on any given curve Xo(N) isgiven
by (see[Sh])

number of cuspson X o(N) = Zq)(d,%) (2.10)
diN

Thereisaspecial class of cusps called Galois conjugate cusps of Xo(N). These are
points which are not equivalent modulo 'g(N) , but which have exactly the same

ramification indices over each of the lower curves and which cannot be distinguished
over Q. They are similar to complex conjugates which always appear as a pair of rootsin
polynomials over R that cannot even be distinguished over R, but which can be
distinguished over C.

When we begin to relate one curve with another, we find some interesting results. Itis
straightforward to verify that, for N dividing M, (M) isasubgroup of I(N).

Therefore, there is an obvious function, formally given by ((M)z —T(N)z, of the
quotients given by 14 (z) = z. Thismap is often called the forgetful map. For d dividing

%, it can be verified that 114(z) = dz, isalso awell defined function.

Example 2.4
f e dfg
If dleldes ,y & SVDFO(M)andy(zl)— €z, + =2y, theno =019 hDis
9 hH gz, +h g
an element of Iy(N) since g must divideM for yOTg(M) andddivides% implies
edz; +df
gz, +h

that d divides g and that % dividesN. Then we notethat o(dz;) = =dz,.

Thus, if we are looking at two curves, Xo(N) and Xo(M), then we can talk about Xo(M)
lying over Xo(N) by any of these maps (since if we mod H out by a smaller group action,
we get abigger curve). Every point, except for afinite number of points, in Xo(N) has
exactly n number of pointslying over it in Xo(M) for afixed n called the degree of the
map. We can find n by anumber of different methods but, as given by [Sh], it sufficesto
know that

n=[I(M):Tc(N)] = theindex of (M) over o(N) (2.11)



However, at each of those finite number of points which have less than n pointslying
aboveit in Xo(M), we then know that some of those points must have an extra
multiplicity in order for the number to add up to n. Thisiscalled ramification. Thisisan
intuitive definition of ramification which suits our purposes here. For aformal definition,
see[Sil].

Thisis similar to what happens to prime numbersin the integers of a number field F after
adjoining some element r to thefield. Sometimes the prime number remains prime in
F[r] so thereis no ramification. Sometimes the prime number becomes r" for some
integer nin F[r]. Sometimes the prime number is amultiple of two new elementsin Fr].
See Example 2.4.

Example 2.5
We will look at the extension Z[ \/é]. The number 3, which isprimein Z, now

ramifies sincein Z[\/é], 3:(\/5)2 and /3 iIsprimein Z[\/é]. The number 2, which

isalso primein Z, now splitssincein Z[Jé], 2:(\/§+1X\/§—1). Note that thisis
not exactly the same situation asis happening in Xo(N). Thisisbecauseit ispossible

to adjoin elementsto Z which do not affect some prime. For example, in Z][ J5 ]1,3is
still aprime so there is no ramification or splitting. However, it is a strong enough
analogy to begin to understand what is going on.

It is known that ramification in the previoudy defined maps from Xo(N) to Xo(M) can
occur only at the cusps and over the “élliptic points’ of the curve. Since we were ableto
choose functions supported on the cusps (i.e. the function has zeros and poles at the cusps
of the curve in guestion and nowhere else), the ramification over the elliptic points was
not an issue in our calculations. We will therefore leave out the definition of eliptic
points as superfluous information for us. The ramification at the cusps, however, was
then crucial to establishing relations between functions. Refer to Section 8 for the
ramification at the cusps in each of the X(N) for N dividing 36.

A particularly nice property of any function f, not identically O, on a projective (i.e. no
puncture holes) algebraic curve C, isthat the number of zeros of f is equal to the number
of polesof f[Sil]. Thus, if we count each zero of f as+1 and each pole of f as—1, then
the sum over all the zeros and poles of f, including any relevant multiplicities, equals
zero. Thedivisor of fisarepresentation of all of the points where f has either azero or a
pole. We denote the multiplicity of the zeros or poles as a coefficient equal to the
number of poles and zeros at a point next to the point in parentheses, i.e.

divisor of f = (f) = (+{ zeros} -{ poles}) (2.12)
Example 2.5
3
If f = LJ’? and C=AL(R) = R 0{w}, then the divisor of f is given by:
x+3)

(f) =3(0) = 3(w) +1(~2) ~1(~2) = 2(=3) + 2(e0) = 3(0) +(-2) —2(-3) — ()
and notethat 3+1-2-1=0



3 Choosing Parameterson Xy(N)

We can now begin to discuss how to pick out functions on Xo(N) that will give us agood
model with which to calculate.

The parameters for any given Xo(N) are functions which generate the function field. On
any genus zero curve, only one parameter, denoted hy, isrequired and it is always
possible to choose it to have divisor (P) — (Q), for any Pand Q. In keeping with our
decisions on what makes a model good, we choose the parameter in genus zero cases to
have divisor (0) — (). Any other function with a single pole at infinity is just the picked
parameter plus a constant. On any genus one curve, two parameters denoted xy and yn,
are required but there is a specia equation, called the Welerstrass equation, closely
linking the two parameters.

There is afunction called the discriminant function, A, which isaweight 12 function (see
[K]) and is useful for creating functions on H with specific divisors. However, it has
some problems to worry about which are briefly discussed below. It is defined to be

24

A(Z)zezmzrljl(l_ezmnz) (3.2)

If welet q=e2"Z, then we can discuss the g-expansion for A which is a power series

expansion for the function near the cusp infinity. The g-expansion for A isgiven by
24

and 8y =8(a) =g []0-a*") (32)
n=1

Ay and any quotient of A, ’'sare aways functions as long as the weights cancel out and
each k dividesthe N in Xo(N). That is, if the product of the function weightsin the
numerator of the quotient is n, then the product of the weights in the denominator of the
quotient must also be n. However, having the 24™ power in the definition makes the
coefficients get very large very fast and thus difficult to deal with. Also, quite often A is
apower of some other function, so we would then be using an unnecessarily large
function.

An exceptionally powerful solution to the problems of A isthe 24" root of A, called the
Dedekind eta-function, which is given by

n(z):eZniz/24ﬁ(l_62ninz) (33)
n=1
nk=n(qk)=q"’12|'|(l—q"”) (34)
n=1

The eta-functions are much nicer because of their smaller coefficients.



If we arelooking at Xo(N), there exists a Dedekind eta-function n for each k dividing

N. One of the reasons that the Dedekind eta-function is so helpful isthat it is possible,
not to mention fairly easy, to find a product of appropriate eta-functions such that the eta-
product has the desired divisor. Thiswill be shown explicitly in Section 4 of this paper.

However, before we get too excited with the advantages of our eta-function, we must
look at its most serious flaw. Because of the leading g* *2 term in the definition of the
eta-function, we have to make sure that we manage to kill off that term one way or
another in the eta-product. Otherwise our eta-product or eta-quotient is not even a
function on Xo(N). Fortunately, [L] givesus aset of criteriawhich, if satisfied, guarantee
that our eta-product will be afunction on Xo(N).

Theorem 3.1 — Ligozat’s Theorem
The Dedekind eta-product, |_| (Ng)" , isafunction on Xo(N) if:
dN
1. Z rq N Omod 24
d[N d
2. Z rqd =0mod 24

4, " 002
M oo

So aslong as we make sure to check Ligozat’s criteria then our selected eta-product is
guaranteed to be a function on Xo(N).

Being able to map between the curves explicitly is done through the use of different iy

maps. Recall from section 2, that if we assume we are looking at Xo(N) and Xo(M)
where N divides M, then thereis a 1ty for each d dividing (M/N). It is defined such that

Ty : Xo(M) - Xo(N) andfor zin Xo(M),

4 (2) = dz (35)
Thisaso clearly impliesthat for the eta-products
mg(o) = q° (36)

In general for f : C; - C,, where C; and C; are curves (not necessarily modular curves),
we use the notation f~ to indicate either the induced map on divisor groups or function
fields (see[Sil]). Itisoften called the pullback of f. Specifically, Ttd* is either of these

mapsinduced by T1y. If we are thinking of Ttd* as the induced map on divisor groups,
then induced map on divisor groups nd*(z) issimply the inverse image of z under Ty .



One final pair of rgl ations are known as the Atkin-Lehner involution, or wg, and its
pullback called wy . Sinceit isan involution, wg’(x) = x for any x in Xo(M).

Theorem 3.2 — Atkin-Lehner Theorem
0d| N,(d,%):],d #1

Oy 1 Xo(N) - Xo(N)
such that iy : Xg(N) — XO(%) satisfiesTy = Ty o Wy

In order to figure out the equations for 1ty and wy in terms of our selected parameter hy

of Xo(N), we are going to need to know the ramification indices for each of the cusps up
to our larger curve Xo(M). Intheseinstances, it is handy to have a handful of
ramification diagrams already churned out. These diagrams are agreat visual aid for
seeing how points ramify between curves. See Section 7 of this paper for alist of all of
the cusp ramification diagrams for Xo(N) where N divides 36. Notethat if N divides M
and M divides P, then it is perfectly straightforward to compose the diagrams,
multiplying the respective indices to get the total ramification between Xo(N) and Xo(P).
It issimilar to the composition of algebraic field extensions and the multiplying of the
degreesto get the total extension degree.

In order to find out which cusps of Xo(M) lie over which cusps of Xo(N) for each of the
Ty, there are afew tricks we can try.

First note that the sum of the ramification indices on each little ramification diagram (see
section 7) equals the index of I'g(top) over I'p(bottom). This alone can sometimes give
the answer. Also from the definition of 1y, it is possibleto tell which cuspslie over
which of the others. If we have a setup like N divides M and M divides P and we know
what the ramification indices are between Xo(N) and Xo(M), and between Xo(N) and
Xo(P), then we can try to guess our way through such that the composition gives the
correct values between Xo(N) and Xo(P).

If al elsefails, then we resort to using the much more powerful, but slightly difficult to
apply, moduli-theoretic approach to modular curves via Tate Curves. It tells us both what
element of the upper space lies over what element of the lower space and its ramification
index. However, it can be abear to use and can often be avoided for genus zero curves.
A good introduction to Tate Curves can be found in Section 14 of [Sil].

4 GenusZero Example

We are going to go through atypical genus zero curve process and select a parameter,
check that the parameter is afunction by Ligozat, and then get the equation for one of the
y's. Wewill work on Xo(6).



If we go through the cusp ramification diagramsin Section 7, or if we skip directly to
Section 8 and look at the table, we find that the cusps on Xo(6) are: 0, % % .

The divisors of each of the A’sare given by:

(81) =6(0) +2(2) +3(3) + ()

(82) =3(0) + (3) +6(3) +2()
(83) = 2(0) +6(3) + (3) +3(w)
(86) = (0) +3(3) +2(3) + 6()

So using alittle linear algebra, we set up and solve a system of equations for the powers
of the eta-functions. The 4x4 matrix comes from the divisors of the A’s. Therisarethe
respective powers for the n;’s. The entriesin the column vector on the right must add up
to zero since Xo(6) is an algebraic curve and we have used multiples of 24 sincethen’s
are 24" roots of the A’s. We have entered them such that they represent the function f
having divisor (f) = (0) — ().

% 3 2 10n0 0240
2 13 39000 g
B 6 1 200 o @
12 3 6t 240

Solving this gives us our powers for the eta-product.
ri=5r=-1,r=1r=-5
We can now find our parameter for Xo(6), cal it hs.

6 (n)°(N3)

Thus, = 3
(n2)(Ne)

(4.1)

We now have to check and make sure that hg is afunction on Xo(6).
1. 5* 6+ (-1)* 3+1* 2+ (-5)* 1= 24 = Omod 24
2. 5¥*1+(-D*2+1*3+(-5)*6=-24=0mod 24
3. 5-1+1-5=0

4, (GSX%XZ)(1)5 =722

So it checks out Ligozat.
Finally, we will find the equation for Ttl*(hz) where h; is the parameter on Xo(2).

Using the cusp ramification diagrams of Section 7, we find that

10



(T (h2)) =3(0) + () - 3(3) - (=) (4.2)

We need to get all of the poles at o since that implies we have a polynomial in hg. This
means that we first need to figure out the coordinate of % . Thisisquite smpleto do for

genus zero curves. We go back to the matrix above that we used to get hs and we now
find an eta-product with divisor (x) = (%) — (). So we find that:

3 \9
« = (N2)°(N3)

(4.3)
n1)3(ne)®

Now, we use the definition of n; to get the g-expansion of x and the g-expansion of hs

and then we can compare the g-expansions. It isimportant to note that the g-expansion
are based on oo, so if all the poles are at oo and there are k poles there, then the g-
expansion starts with the term . Also, since thisis a genus zero curve, al functions
with asingle pole at infinity like hg must only differ from hg by a constant.

We find that he(q) = q* — 5 + 10q — 1607 + 35¢° — 664" ...
and that x(g) = g™ + 3 + 10q — 16q° + 350° — 66q" ...

By inspection we can see that hs+8 = x, which isto say that hs(%) = x(%) -8=0-8=-8

So the coordinate of % is—8.

Now, back to the problem at hand.
We know that (15" (hy)) = 3(0) + (%) - 3(% ) — (o)

and we just found that (h+8) = (%) —(o0),
so then (14 (h2) (he+8)°) = 3(0) + (5) —3(5) = () + 3(3) = 3(x0) = 3(0) + (3) — 4(=0).

Now, multiplying the g-expansions of 14 (hy) and (he+8)® we find that
(1y(hy) (he+8)® = he’(he+9)

he(hs +9)

And sowe get 14 (hy) = 2
(he +98)

5 Special Case of Group Structure on Genus One Curve Xq(36)
A corollary of the Riemann-Roch theorem, as stated in [Sil], says that

If deg(D) > 2g -2, then ¢ (D) =deg(D) +1—g
where ¢ (D) isthe number of linearly independent functions with poles at most on D.

11



For all genus one curves, thisimpliesthat if we pick any point such that D = (P),

then deg(D) =1>2*1-2=0. Therefore, /(D) =1+1-1=1
Thisimplies that the one linearly independent function is just the family of
constant functions. Thus there is no non-constant function with asingle pole at P
for any point P.

Now pick D =2(P). Then /(D) = 2+1-1 = 2. Thisimpliesthere existsan x with
(x) = (Q)+(R)—2(P) where Q and R are points on the curve.

Now pick D = 3(P). Then /(D) = 3+1-1 = 3. Thisimpliesthere existsay with
(y) = (A)+(B)+(C)-3(P) where A, B and C are points on the elliptic curve.

Now pick D = 6(P). Then /(D) = 6+1-1 = 6. However, we have 7 functionsin the
basisfor this: 1, X, y, X%, xy, X%, y?. Thereforex and y satisfy an elliptic equation
of the form y? = ax>+bxy+cx®+dy+ex+f. Thisisknown as the Weierstrass
Equation and every genus one curve has this property. In particular, the
Welerstrass Equation for the genus one curve studied here can be found in section
6 under X(36).

It is aways possible to define a group structure on these kinds of (genus one) curves with
the following construction. Since the Welerstrass Equation is a cubic, any straight line
crossing one of the points on the curve, must cross exactly three points on the curve. We
must note, though, that we include the point at infinity as being on the curve and is the
additive identity for the group. Also notethat if the line is tangent to the curve then that
will count as more than one crossing of the curve. Knowing all that, then addition on the
curve works as follows:

If P and Q are points on the curve, and the straight line connecting them also crosses

the curve in another spot then that point equals {(P+Q).

The above formulation of addition on the curve Xo(N) is equivalent to saying that:
If P and Q are points on the curve, then P+Q=R if and only if there exists afunction f
on Xo(N) such that the divisor of f has the property that

() =(R) + () - (P)-(Q) (5.1)

Example 5.1
On Xo(36), the point 0 + the point % = the point < since we can look at the function
given by our parameter x which has divisor (x) = (0) + (%) — 2(0) as can be seen in
section 6. Therefore, the function % has divisor (%) = (0) + (o0) — (0) — (%).
It is natural to ask how the special points from the modular curve view of Xo(N), i.e. the
cusps, relate to the group structure of the curve. Thereis a genera theorem stating that

the cusps have afinite order which impliesthat there is a finite subgroup containing all of
the cusps. What isreally surprising here though, was that the “good” cusps — the non-

Galois conjugate cusps — formed a group of their own isomorphic to Z/GZ , and then that
the compl ete set of cusps create a group isomorphic to ( /GZ)X( /22)

12



Group Structure on cusps. isomorphic to (%Z)X(Z/zz)
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6 Information on Xq(N) for N = {factors of 36}

The following information is the main result of my work. All of the terms have been
defined and explained in the above sections. The reader is encouraged to check their
understanding of the ideas presented here by working out afew of the results given below
for themselves.

Xo(2)

Genus=0

Parameter:

4
.
2
ha(q) = g — 24 + 2760 - 2048¢° + 112020 ...

(hp) = (0) — ()

Cusps and Coordinates of Cusps:

Cuspc | Coordinate hy(c) | Eta-product with divisor (C) — (o)
0 0 h,

o0 o0 -

Moduli-Theoretic Maps.

1. Xo(Z) — X(1)

3
m ()= (e 256)

17
. Xo(Z) — X(1)
3
(1) = (hy ;216)
Wo: Xo(Z) — X0(2)
Wo (hy)= 4096
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Xo(3)
Genus=0

Parameter:

2
hg = ﬂl%
3

he(q) = g — 12 + 54q — 7607 — 243q° + 1188q" — 13849° ...
(hg) = (0) — ()

Cusps and Coordinates of Cusps:

Cuspc | Coordinate hz(c) | Eta-product with divisor (C) — (o)
0 0 hs

o0 o0 --

Moduli-Theoretic Maps:

1 Xo(3) — X(1)

o (Mg +27)(hg +243)°
(J)_ 3
hs

T

73: Xo(3) — X(1)

)= (hg +27)(hs +3)°
h

3
W3 X0(3) — X0(3)

" 729
w3 (h3)= —
hg
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Xo(4)
Genus=0

Parameter:

hy = ﬂlg
4

ha(g) = q* — 8 + 20q — 62q"* + 2160° — 641P ...

(ha) = (0) = (c0)

Cuspsand Coordinates of Cusps:

Cuspc | Coordinate hy(c) | Eta-product with divisor () — («)
0 0 hy
1 (n)**
2 -16 8/, 16
(N (n4)
o0 0 -
Moduli-Theoretic Maps.
1. X0(4) - X0(2)
2
ry () = 8

. X0(4) - X0(2)

Wa. X0(4) - X0(4)

h4 +16

n (hy) = hy(hy +16)

Wy (he) = %

16




Xo(6)
Genus=0

Parameter:

h- ()°(M3)
° 5
(n2)(Ne)

he() = g —5 + 10q— 160° + 350° - 664" ...

(he) = (0) — ()

Cusps and Coordinates of Cusps:

Cuspc | Coordinate hg(c) | Eta-product with divisor (C) — (o)
0 0 he
1 (n2)3(n3)°
2 -8 3/ \9
(n)~(nNe)
1 (n2)°a)*
3 -9 4, 8
(N " (Ne)
o0 (e 0] -

Moduli-Theoretic Maps.

1. X0(6) - X0(3)

n3: Xo(6) — Xo(3)

Wo: X0(6) — X0(6)

1t Xo(6) — Xo(2)

2
1 (hs) = m
(hs +9)

2
g (hg) = Pe(l6 +8)°

he +9

——

17




3
() = e(fe + 2)
(hg +8)

n3: Xo(6) — Xo(2)

3
7 (hy) = hﬁ(&ﬁ—:?

w3 Xo(6) — Xo(6)

w3 (he)= -9 %4_8%
+9

18



Xo(9)
Genus=0

Parameter:

ho = ﬂlg
9

ho(q) = g+ =3+ 5¢° — 7q° + 3q° + 150 ...
(hg) = (0) — ()

Cusps and Coordinates of Cusps:

Cuspc Coordinate ho(C) Eta-product with divisor (c) — ()
0 0 hy
%% roots of h§+9rg+27:0 -
o0 o0 -

Moduli-Theoretic Maps.

1. Xo(g) — X0(3)

3
' (hg) = 2#
hg +9hg + 27

3. Xo(g) - X0(3)
15 () = ho(hg +9hg +27)

Wo. Xo(g) — Xo(g)

* 27
Wg (hg)= —

hy
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Xo(12)
Genus=0

Parameter:

ho = (1)°(2)ne)
12 2 3
(N2)°(n3)(N12)

hi(@) =q'-3+2q+q°-29"-29° + 2q™ + ...
(h12) = (0) — ()

Cusps and Coordinates of Cusps:

Cusp ¢ | Coordinate h;x(c) | Eta-product with divisor () — ()
0 0 hio
1 . (n2)'(n3)
2 (N)°*(N4)*(N6)(N12)°
1 . (n3)°(na)
3 N (N12)°
1 2 (n4)*(ne)*
4 (n2)%(n12)*
1 ) (n)(n4)*(n6)°
° (N2)°(N3)%(n12)°

Moduli-Theoretic Maps.

1. X0(12) - X0(6)

iy~ Mo
1 (he) = ey +2

. Xo(lZ) - Xo(6)

m2 (he) = (Mo +6)

Wa. X0(12) - X0(12)

20



W4*(h12) = ‘4%E
ot4

. Xo(12) - Xo(4)

3
nl*(h4) - hlZ(hI.Z +:’)
(h2 +3)

n3: Xo(12) — Xo(4)

3
n3 (hg) = I‘]lzgizj;)

W3l Xo(12) - Xo(lZ)

R +4
ws (hyp) = —3422
it = o
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Xo(18)
Genus=0

Parameter:

_ (M)*(ne)(ng)
18 — 2
(N2)(N3)(N1s)

his(@ =g -2+ +q° -’ —q* ...
(hag) = (0) = (o0)

Cuspsand Coordinates of Cusps:

Cuspc Coordinate hyg(c) Eta-product with divisor (¢) — ()
0 0 hig
1 (n2)*(ne)
2 -3 2
(N1)(N18)
%% roots of I‘f8+6m8 +12=0 --
%,% roots of hlzg+3hlg+3:0 -
1 (6)n9)”
9 -2 3
(N3)(N18)
0 o0 -

Moduli-Theoretic Maps.

1. X0(18) - Xo(g)

2
TE]_*(hg) - hl8(h|_8 +§)
(g +2)

. X0(18) - Xo(g)

2
nz*(hg) — hl8(|ﬂh.8 +3)

(g +2)

Wo! X0(18) - X0(18)
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Wy (hig) = =2 e +3E
g+2
1. Xo(18) - Xo(6)

3
nl*(hG) = ZL
hig +3hg +3

3. Xo(18) - Xo(6)
15’ (he) = hyg(hfg +6hyg +12)

Woa. Xo(18) - Xo(18)

\ +2
Wy (hyg) = —3218
9(18) }'1]_8"'3%
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Xo(36)

Genus=1

Parameters:

= X = (rlz)z(mz)(rllsz)
(N4)(N6)(N36)

X=)@6(q)=q-2—2+q4+q10—q16—q22

) =(0) +(5) —2()

y= (N1)*(Ng)(N12)(N13)
(N2)(N3)(N36)°

Y@ =q°-2q%+1+2q°-

1) =2(0) + (5) = 3(=)

2= X3~ 4xy + 2% — By

Cuspsand Coordinates of Cusps:

2q°+ ¢ ...

Cuspc Coordinate x(c) Coordinate y(c)
0 0 0
1
5 0 -6
12 f x2+6x +12=0 tsof y2-12y +48=0
35 roots of x X = rootsof y y =
1
1 -3 3
%,% rootsof x2+6x +12=0 rootsof y?+12=0
1
9 -2 0
1 5 2 _ 2 o
318 rootsof x“+3x +3=0 rootsof y=+3=0
1
is -2 2
o0 o0 o0

Moduli-Theoretic Maps:

1. Xo(36) - Xo(18)

nl*(hIS) = XTyZ

24




. X0(36) - X0(18)

Wa. X0(36) - X0(36)

1. X0(36) - X0(12)

3. Xo(36) - Xo(lZ)

Woa. Xo(36) - Xo(36)

71:2* (h]_g) =X

P@Y-X) yx+3) O

Wy (X, y) = :
s (6Y) = 1 y2 y+2x+4ﬁ
. Xy - X% +3y
m1 (h12) :2—
X< +3x+3
ng*(h]_z) = y+2X
2
. Hoaxe2 “3y-xT-2x{
W9(X!y)_|j

X+3 " (x+3)? ﬁ
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7 Cusp Ramification Diagrams

These diagrams are convenient visual aides in trying to figure out how different cusps
ramify over certain curves. Analogously to towers of field extensions, the indices
multiply in the obvious way in order to “skip” acurve.

Example 7.1
To find the index of the cusp % in Xo(18) over the cusp 0in Xo(3), by 113 can be
donein either of two ways. we could look at the tower
Xo(18) U A X9 U B X (3), or we could look at the tower

Xo(18) i3 Xp(6) O 3 X (). Thefirst tower and referencing below tells us
that the index of the cusp % in Xo(18) over the cusp % in Xo(9), by 1yis 2 and that

the index of the cusp % in Xo(9) over the cusp 0in Xo(3), by 13is1. Thereforewe

get that the index of the cusp % in Xo(18) over the cusp 0in Xo(3), by 113152 by

multiplying the indices and composing the 11y’s. It isleft to the reader to check that
they both give the same answer.

The indices in these diagrams were calculated using the Moduli-Theoretic approach to
the curves. However, since this paper has taken the classical approach to modular curves,
we give a description below on how to calculate the indices using the classical approach.
Note that the method below gives the index for acusp ¢ in Xo(N) over the cusp « in X(1).
It is then necessary to use the above tower manipulations to find out what the index of a
cusp cin Xo(N) isover acusp min Xo(M).

First it is necessary to choose a basis for the left cosets of %O(N) . Thisisto say that a

set of elementsof I whicharenotin I'g(N), {Yg.,..-Yk} , must be chosen such that
1) Every element of '(N) isin one of the equivalence classes y;I fori =0,...,k and
2) that none of the y; are equivalent.
Checking condition 1 isjust checking that any arbitrary element of I'o(N) can be
represented in at |east one of the equivalence classes. Checking condition 2 amounts to
checking that v "lyi OTo(N), which means that any arbitrary element of I'g(N) can be
represented in at most one of the equivalence classes.

k
Now we note that from [K], in “IF isafundamental domain for Mo(N), where Fisthe
i=1
fundamental domain for ' given by equation (2.4).
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For each element y; of B which takes to ¢ (or an equivalent point modulo g(N) ), we
do the following manipulation. We pick an arbitrary element z in F such that
—% <Reg(z) < % and Im(z)>>0 so that z is near the cusp « in Xo(N) . We act on z first by

Yi _1, then by 1y, then by A; where A; isamatrix in I which takes the resulting

f S
coefficients of zto oo in X(1). That is, if yi'l = g hSthen A = % OleBwherer and
O —der

sareintegerssuch that A; OI" (which can be found using the Chinese Remainder

Theorem again). We then count how many times each of the resulting expressions,
acting on F, cover our original fundamental domain F.

Example 7.2
Find the index of the cusp « in Xo(2) for T1,. First of al we need abasis B for the

|eft cosets of %o )

O 0 0
Let B=[yp = 2 Syl -2 Syz = [Dbeour basis.
g0 B H" T 5% H 1

Checking condition 1 we note that yo_1 = Yo, that yo'lyl =y, and yo'lyz =y2,and

1 0 1] 2 1
neither of thesearein My (2). Also y; yz—g Iz D D Swhlchlsalso
H1 1HH 1H H1 of

clearly notin My(2). Itisleft to the reader to check that condition 2 hold for B.

Well, VO (00) = 0, yl_l (o0) = -1, and yz_l(oo) =—1. However we know that —1 ~ 0 as

1]
y(—1)—%) %1)— 01+11—OandyDI'0(N) So for theindex of thecusp 0 in

Xo(2) for 1, we must then look at y; and y,. For theindex of the cusp oo in Xo(2)
for 1, wejust haveto look at yq.

1 0O
zot 0B 2z0fe ZzwhereAO:%) 1%. Now 2z covers Ftwice. This

can be seen by letting 2z act on F (i.e. we let z range through all of the pointsin F).
We clearly get adomain, call it F, which has the same form as F but is twice as wide.
Those points of F which are also in F cover F once. The points outside of F are
equivalent to pointsin F modulo SL,(Z) and cover F once again.

A similar procedure (left to the reader) will show that each of y; and y, cover a
different half of F and they combine to cover F one time total.
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Xo(2)

X(1)

Xo(2)

X(1)

Xo(3)

X(1)

Xo(3)

X(1)

Xo(4)

Xo(2)

Xo(4)

Xo(2)

Xo(6)

Xo(3)

1.

To.

M.

3.

1.

To.

1.
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Xo(6)

Xo(3)

Xo(6)

Xo(2)

Xo(6)

Xo(2)

Xo(9)

Xo(3)

Xo(9)

Xo(3)

To.

M.

3.

1.

3.
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Xo(4)

Xo(12)

Xo(4)

Xo(18)

Xo(9)

Xo(18)

Xo(9)

M.

3.

M.

To.

=

_—

~—
=
N
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Xo(18) o I 3 5 § & & =
‘ . 3 3 xl / Nl /
Xo(6) o 1 % o
S T L
‘ 3 Nl / xl / 3 3
Xo(6) 0 % % o
1 1 1 2 1 1 5 5 1 1
Xo(36) 0 3 4 3 9 6 12 6 218 ©
‘ . 2 1\/1 2 2 2 1\/1 1\/1 1\/1
«aw o 4 123 1 3 o
1 1 2 1 1 5 1 1 1 5
Xo(36) 0 2 6 3 6 9 8 12 12 %
‘ ! 1\ /1 24[ 1 /1 l\ /l l\ /l 21 2} 2
Xo(18) o 3 3 3 3 g e =
wn 0 33 3 3 % i3 b b A -

6 6 12 12
‘ m 3 3 xl / 3 xl / xl /
Xo(12) 0 3 1 1 1 %
CCIL N I T I A O I
s Ny Ny o Ny o s
Xo(12) 0 : 1 1 1 o
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8 Divisorsof Xo(N) for N = {factors of 36}

The following is merely an extension of the above section. The divisor of Ay in Xg(N),

for al k dividing N, were each computed using the cusp ramification diagrams from
section 7 and then laid out in the table below. To calculate the divisor for any specific
Ay inany specific Xo(N), it is necessary to choose an appropriate tower of curves such

that it starts at Xo(N) and goes all the way down to X(1) and that the Ty 'sare chosen
such that the product over the di’ sequals k. For example, the tower

Xo12) OB Xo6)0B Xo@OB X(1) givesthedivisor of AginXg(12).

Divisorsfor Xq(N)

A@@) (A%
0 2 1
1 2

A@) (A@)

0 3 1
00 1 3
A@) (AE?) (@)
0 4 2 1
% 1 2 1
00 1 2 4

Q@) AEd) @) @Ed)

0 6 3 2 1
1
3 2 1 6 3
1
5 3 6 1 2
00 1 2 3 6
B@) @G BEd)

0 9 3 1
1_2
3°3 1 3 1

00 1 3 9
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(B@) A@) @@ @@ @@ @GE?)
0| 12 6 4 3 2 1
2 1 2 3 1 6 3
12 || 3 6 1 12 2 4
34 2 12 1 6 3
2 3 6 1 2 1
| 1 2 3 4 6 12
(A@) (@@ @@) AE) @@) ©@@®)
0 18 9 6 3 2 1
: 2 1 6 3 18 9
18 =2 1 2 3 6 1 2
=21 2 1 6 3 2 1
2 9 18 3 6 1 2
% 1 2 3 6 9 18
(B@) (A@) @@ @@ A% @@) @@?) @E@®) o
0 36 18 12 9 6 4 3 2
= 1 2 1 6 9 3 18
=2 1 2 4 6 1 12 2
: 4 2 12 1 6 36 3 18
36 1=2 | 1 2 3 1 6 1 3 2
v 9 18 3 36 6 1 12 2
%:% 4 2 12 1 6 4 3 2
2 9 18 3 9 6 1 3 2
% 1 2 3 4 6 9 12 18
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9 Quick Matlab program to find the cusps of Xq(N)

Thisfunction is best used to find out what the cusps are on Xo(N). The points eligible to
be cusps on Xo(N) are those fractions g between 0 and 1, inclusive, such that q divides N

and p rangesfrom 0to g. Clearly, we can assumethatg isin lowest terms as well.

Note: foral N, 0~1and ﬁ~oo, since

1 0
= Band = Barein Mo(N) for al N and
%) iy %\l 10

B e 8 i

Example 9.1: Look at X¢(12)
1121315

The eligible cusps are then: 0’5’5’5'2’2’6’6'00
It is then quick to check that 1~2 l~% %~% using the program. So then our cusps

A 373%
-0l 111
on Xo(12) would be: 0,2,3,4,6,00

function y=congruent(p, g, r, s, N, k)
%This function will find matrices of SL_2(Z)
%such that [ab;c d](p/q)=(r/s) in X_O(N).
% Note: (p/g) and (r/s) must be in lowest terms.
% Note: 0= (0/1). It can't check if p/q ~ infinity,
% but that is easy enough to do by hand since
% [ab;c d](infinity) = alc.
for x=-k:k
[(N*rx+)/s (r-p* ((N*r*x+0)/s))/a;N*x (s-p*N*x)/q]
end
%Kk isjust a guess on the number of matrices to check to seeif p/q ~r/s
%k=10 is usualy more than sufficient

Now you just haveto look and seeif any of the resulting matrices have all integer entries.

If so, then 2~L  Ifnot, then 2 + .
q s q s
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