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Coherent System of Models for a Family of Modular Curves

Tim Kneezel

Abstract

Modular curves of the form X0(N) are intrinsically interesting curves to
investigate.  They contain a wealth of information and cross over the
boundaries of geometric, algebraic, and analytic mathematics.  We set out
to compute all of the information for a specific family of related modular
curves, namely X0(N) for those integers N dividing 36.  In this paper, we
work out the parameters for the curves, the coordinates of the important
points in relation to those parameters, and then we find equations for the
important maps between the curves.  Also, since X0(36) has genus one,
and therefore has a natural group structure, we include a brief section on
the subgroup generated by its cusps.

1  Introduction

In order to begin to understand the properties of a modular curve like X0(N), it is
imperative to have a good working model for the curve.  In this context, this means
having a specific set of equations for describing the curve.  So we will be selecting
specific functions on each of the curves and then using the properties of the curves to find
equations relating the functions.  This of course begs the question “If there are many
choices for such a model, what criteria make a given model ‘good’?”

One of the main desired qualities is that the selected functions are completely supported
on a specific kind of special points of the modular curve, called the cusps.  This means
that we choose our parameters to be functions which have zeros and poles only at the
cusps.  This was possible to do in every case observed in this study.  Another important
feature of the model is to be able to explicitly state formulae for the different naturally
arising maps between the curves.  These formulae are exceedingly helpful in beginning to
understand the relationships between the different curves.

However, before we delve into these concepts, we should define these terms for the sake
of completeness.
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2  Overview of the Basics

The upper half plane of C, most often denoted as })(0,y),,(x:iy{x ∞∈∞−∞∈+=H , is
the most fundamental starting point for work with modular functions.  The modular group
SL2(Z), which is a group under matrix multiplication, acts on H in a very specific manner
which makes it possible to define modular functions f on H.

SL2(Z) is defined by:
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For any two elements HH ∈∈ y and x , we say that x is equivalent to y modulo Γ ,
denoted x ~ y modulo Γ , if there exists some Γ∈γ  such that y(x) =γ .  This is easily
seen to be an equivalence relation and the proof is left to the reader.  This is the Γ -
equivalence class of z, denoted zΓ .

Example 2.1
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A modular function f is then a function on H which respects this group action seen in
equation 2.2.  This means that

(z)(z))( ,z  and  ffH =γ∈∀Γ∈γ∀ (2.3)

If we then take H and mod out by the group action Γ , then we get the quotient space

denoted as Γ
H .  Formally, Γ

H  is the set of Γ -equivalence classes }z:z{ H∈Γ .  A

fundamental domain of Γ
H , call it F, is particularly useful for visualizing what the

quotient looks like.

From [K] we can see that if G is any subgroup of Γ , then FG is called a fundamental
domain of G if it satisfies the following two criterion:
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1.   If any two points are equivalent under G, then they must be the same point
in FG or they both lie on the boundary of FG.

2.   If z1 is any point in H, then there exists some point z2 in FG such that z1~z2.

One such fundamental domain for the action of SL2(Z) is shown in Chapter 3 of [K] to be

}1|z|,zRe:z{F
2
1

2
1 ≥≤≤−∈= H (2.4)

which looks like

Since we have to allow for there to be two distinct points, both on the boundary of FG, to
be equivalent, it is reasonable to view the two boundaries as being pulled towards each
other and being glued together.  This is not just an intuitive process, but results from the
fact that under the group action of SL2(Z)

1z(z)
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Similarly, the lower boundary is glued to itself via the operation

z

1
z)(

01

10 −=






 −
(2.6)

All of this results in something resembling the surface of a sphere with a little hole poked
in the top of it.  It is helpful to visualize the lines 2x+1=0 and 2x-1=0, from the picture
above of F, wrapping around the y-axis and sticking together.  The semicircular boundary
at the bottom is then glued to itself.  The resulting space is of H modulo Γ  is defined to
be X(1).  Thus,

Γ= HX(1) (2.7)

Similarly, we can also look at 0Γ (N), where
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It is straightforward to verify that 0Γ (N) is a subgroup of Γ .  Note that since 0Γ (N) is a

subgroup of Γ , elements that used to be equivalent by Γ  may no longer be equivalent by

0Γ (N).  Analogously, we define X0(N) to be the quotient space resulting from H modulo

the group action from 0Γ (N).  That is

)N((N)X
0

0 Γ= H (2.9)

The genus of the curve X0(N) can best be described using topological ideas.  X0(N) can
be viewed as a surface over H resembling the surface of a sphere, in which case, the
genus of X0(N) is the number of holes that go all the way through the sphere.  A genus
zero curve would resemble the surface of a sphere, while a genus one curve would
resemble the surface of a torus.  Note that even though X0(N) clearly looks like a surface
it is customary to refer to it as a complex curve.  This is because it really is a two
dimensional surface over R, but it is only a one dimensional curve over C and we are
working over H which is a subset of C by definition.

The cusps of X0(N) are points that are added to X0(N) in order to fill in the holes that are
in it.  Note the holes referred to here are not the same as the holes in the above
description of genus.  They are more like little punctures in the surface of sphere than
they are like the hole in a torus.  Recall that in constructing the quotient X(1) from H, it
was necessary to fill in the one missing puncture hole in order for X(1) to look like the
surface of a sphere.  This hole can be seen as coming from the fact that there was no
upper boundary to the fundamental domain F.  Then we throw in “the cusp at infinity” to
fill in that hole and we have a smooth sphere.  That works fine for X(1),  but X0(N) has
additional puncture holes that need to be filled in as well.  For the extra cusps, we simply
extend the action of 0Γ to the rational numbers on the real axis of the complex plane.

Note, under the full modular groupΓ all the rational numbers were all equivalent to
infinity as can be seen in the following example.  Since they were all a part of one
equivalence class for an element of Γ,  we have only added new elements (i.e. the

necessary cusps) to
0Γ

H , but nothing new was added to Γ
H .

Example 2.2

For any rational number 0,q with ms,lowest terin  
q
p ≠  then we know from the

Chinese Remainder Theorem that there exist two integers, call them r and s, such that

rp + sq = 1.  Therefore we see that 
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Example 2.3

For a more concrete example, we look at 
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0)( =∞γ , so ∞ ~ 0 modulo Γ .  However, it is straightforward to show (and the

reader is invited to do so) that for N>1, there is no )N(0Γ∈γ  with the property that

.0)( =∞γ

The number of cusps necessary to fill in all the holes on any given curve X0(N) is given
by (see [Sh])

( )∑ϕ=
N|d

d
N

0 d,)N(Xon  cusps ofnumber (2.10)

There is a special class of cusps called Galois conjugate cusps of X0(N).  These are
points which are not equivalent modulo )N(0Γ , but which have exactly the same

ramification indices over each of the lower curves and which cannot be distinguished
over Q.  They are similar to complex conjugates which always appear as a pair of roots in
polynomials over R that cannot even be distinguished over R, but which can be
distinguished over C.

When we begin to relate one curve with another, we find some interesting results.  It is
straightforward to verify that, for N dividing M, 0Γ (M) is a subgroup of 0Γ (N).

Therefore, there is an obvious function, formally given by 0Γ (M)z → 0Γ (N)z, of the

quotients given by 1π (z) = z.  This map is often called the forgetful map.  For d dividing

N
M , it can be verified that dπ (z) = dz, is also a well defined function.

Example 2.4
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Thus, if we are looking at two curves, X0(N) and X0(M), then we can talk about X0(M)
lying over X0(N) by any of these maps (since if we mod H out by a smaller group action,
we get a bigger curve).  Every point, except for a finite number of points, in X0(N) has
exactly n number of points lying over it in X0(M) for a fixed n called the degree of the
map.  We can find n by a number of different methods but, as given by [Sh], it suffices to
know that

n = [ 0Γ (M): 0Γ (N)] = the index of 0Γ (M) over 0Γ (N) (2.11)
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However, at each of those finite number of points which have less than n points lying
above it in X0(M), we then know that some of those points must have an extra
multiplicity in order for the number to add up to n.  This is called ramification.  This is an
intuitive definition of ramification which suits our purposes here.  For a formal definition,
see [Sil].

This is similar to what happens to prime numbers in the integers of a number field F after
adjoining some element r to the field.  Sometimes the prime number remains prime in
F[r] so there is no ramification.  Sometimes the prime number becomes rn for some
integer n in F[r].  Sometimes the prime number is a multiple of two new elements in F[r].
See Example 2.4.

Example 2.5

We will look at the extension Z[ 3 ].  The number 3, which is prime in Z, now

ramifies since in Z[ 3 ], ( )  3 and 3 2
3=  is prime in Z[ 3 ].  The number 2, which

is also prime in Z, now splits since in Z[ 3 ], ( )( )112 33 −+= .  Note that this is
not exactly the same situation as is happening in X0(N).  This is because it is possible

to adjoin elements to Z which do not affect some prime.  For example, in Z[ 5 ], 3 is
still a prime so there is no ramification or splitting.  However, it is a strong enough
analogy to begin to understand what is going on.

It is known that ramification in the previously defined maps from X0(N) to X0(M) can
occur only at the cusps and over the “elliptic points” of the curve.  Since we were able to
choose functions supported on the cusps (i.e. the function has zeros and poles at the cusps
of the curve in question and nowhere else), the ramification over the elliptic points was
not an issue in our calculations.  We will therefore leave out the definition of elliptic
points as superfluous information for us.  The ramification at the cusps, however, was
then crucial to establishing relations between functions.  Refer to Section 8 for the
ramification at the cusps in each of the X0(N) for N dividing 36.

A particularly nice property of any function f, not identically 0, on a projective (i.e. no
puncture holes)  algebraic curve C, is that the number of zeros of f is equal to the number
of poles of f [Sil].  Thus, if we count each zero of f as +1 and each pole of f as –1, then
the sum over all the zeros and poles of f, including any relevant multiplicities, equals
zero.  The divisor of f is a representation of all of the points where f has either a zero or a
pole.  We denote the multiplicity of the zeros or poles as a coefficient equal to the
number of poles and zeros at a point next to the point in parentheses, i.e.

divisor of f = (f) = (+{zeros}-{poles}) (2.12)

Example 2.5

If 
2

3

3)(x

2)(xx

+
+=f  and }{)(C 1 ∞∪== RRA , then the divisor of f is given by:

)()3(2)2()0(3)(2)3(2)2(1)2(1)(3)0(3)( ∞−−−−+=∞+−−−−−+∞−=f
and note that 3 + 1 – 2 – 1 = 0
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3  Choosing Parameters on X0(N)

We can now begin to discuss how to pick out functions on X0(N) that will give us a good
model with which to calculate.

The parameters for any given X0(N) are functions which generate the function field.  On
any genus zero curve, only one parameter, denoted hN, is required and it is always
possible to choose it to have divisor (P) – (Q), for any P and Q.  In keeping with our
decisions on what makes a model good, we choose the parameter in genus zero cases to
have divisor (0) – (∞).  Any other function with a single pole at infinity is just the picked
parameter plus a constant.  On any genus one curve, two parameters denoted xN and yN,
are required but there is a special equation, called the Weierstrass equation, closely
linking the two parameters.

There is a function called the discriminant function, ∆, which is a weight 12 function (see
[K]) and is useful for creating functions on H with specific divisors.  However, it has
some problems to worry about which are briefly discussed below.  It is defined to be

( )
24
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zn  i  2z i  2 e1e)z( ∏
∞

=

ππ −=∆ (3.1)

If we let z i 2eq π= , then we can discuss the q-expansion for ∆  which is a power series

expansion for the function near the cusp infinity.  The q-expansion for ∆  is given by

and  ( )
24

1n

nk kk
k q1q)q( ∏

∞

=
−=∆=∆ (3.2)

k∆  and any quotient of k∆ ’s are always functions as long as the weights cancel out and
each k divides the N in X0(N).  That is, if the product of the function weights in the
numerator of the quotient is n, then the product of the weights in the denominator of the
quotient must also be n.  However, having the 24th power in the definition makes the
coefficients get very large very fast and thus difficult to deal with.  Also, quite often ∆  is
a power of some other function, so we would then be using an unnecessarily large
function.

An exceptionally powerful solution to the problems of ∆  is the 24th root of ∆ , called the
Dedekind eta-function, which is given by

( )∏
∞

=

π−=η
1n

zn  i  224 / z i  π2 e1e)z( (3.3)

( )∏
∞

=
−=η=η
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nk 12/kk
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The eta-functions are much nicer because of their smaller coefficients.
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If we are looking at X0(N), there exists a Dedekind eta-function kη  for each k dividing
N.  One of the reasons that the Dedekind eta-function is so helpful is that it is possible,
not to mention fairly easy, to find a product of appropriate eta-functions such that the eta-
product has the desired divisor.  This will be shown explicitly in Section 4 of this paper.

However, before we get too excited with the advantages of our eta-function, we must
look at its most serious flaw.  Because of the leading q1/ 12 term in the definition of the
eta-function, we have to make sure that we manage to kill off that term one way or
another in the eta-product.  Otherwise our eta-product or eta-quotient is not even a
function on X0(N).  Fortunately, [L] gives us a set of criteria which, if satisfied, guarantee
that our eta-product will be a function on X0(N).

Theorem 3.1 – Ligozat’s Theorem

The Dedekind eta-product, ∏ η
N|d

r
d

d)( , is a function on X0(N) if:

1.  24mod0
d

N
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N|d
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3.  0r

N|d
d =∑

4.  2
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N|d

d

d

N
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∏

So as long as we make sure to check Ligozat’s criteria then our selected eta-product is
guaranteed to be a function on X0(N).

Being able to map between the curves explicitly is done through the use of different dπ
maps.  Recall from section 2, that if we assume we are looking at X0(N) and X0(M)
where N divides M, then there is a dπ  for each d dividing (M/N).  It is defined such that

)N(X)M(X: 00d →π  and for z in X0(M),

dzz)(d =π (3.5)

This also clearly implies that for the eta-products
d

d qq)( =π (3.6)

In general for 21 CC:f → , where C1 and C2 are curves (not necessarily modular curves),
we use the notation f* to indicate either the induced map on divisor groups or function
fields (see [Sil]).  It is often called the pullback of f.  Specifically, dπ * is either of these

maps induced by dπ .  If we are thinking of dπ * as the induced map on divisor groups,

then induced map on divisor groups dπ *(z) is simply the inverse image of z under dπ .
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One final pair of relations are known as the Atkin-Lehner involution, or wd, and its
pullback called wd

*.  Since it is an involution, wd
2(x) = x for any x in X0(M).

Theorem 3.2 – Atkin-Lehner Theorem

( )

d1dd
N

00d

00d

d
N

w satisfies  )(X)N(X:such that 

)N(X)N(X:w

1d,1d,N,|d

oπ=π→π

→∃

≠=∀

In order to figure out the equations for dπ  and wd in terms of our selected parameter hN

of X0(N), we are going to need to know the ramification indices for each of the cusps up
to our larger curve X0(M).  In these instances, it is handy to have a handful of
ramification diagrams already churned out.  These diagrams are a great visual aid for
seeing how points ramify between curves.  See Section 7 of this paper for a list of all of
the cusp ramification diagrams for X0(N) where N divides 36.  Note that if N divides M
and M divides P, then it is perfectly straightforward to compose the diagrams,
multiplying the respective indices to get the total ramification between X0(N) and X0(P).
It is similar to the composition of algebraic field extensions and the multiplying of the
degrees to get the total extension degree.

In order to find out which cusps of X0(M) lie over which cusps of X0(N) for each of the

dπ , there are a few tricks we can try.

First note that the sum of the ramification indices on each little ramification diagram (see
section 7) equals the index of Γ0(top) over Γ0(bottom).  This alone can sometimes give
the answer.  Also from the definition of dπ , it is possible to tell which cusps lie over

which of the others.  If we have a setup like N divides M and M divides P and we know
what the ramification indices are between X0(N) and X0(M), and between X0(N) and
X0(P), then we can try to guess our way through such that the composition gives the
correct values between X0(N) and X0(P).

If all else fails, then we resort to using the much more powerful, but slightly difficult to
apply, moduli-theoretic approach to modular curves via Tate Curves.  It tells us both what
element of the upper space lies over what element of the lower space and its ramification
index.  However, it can be a bear to use and can often be avoided for genus zero curves.
A good introduction to Tate Curves can be found in Section 14 of [Sil].

4  Genus Zero Example

We are going to go through a typical genus zero curve process and select a parameter,
check that the parameter is a function by Ligozat, and then get the equation for one of the

dπ ’s.  We will work on X0(6).
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If we go through the cusp ramification diagrams in Section 7, or if we skip directly to

Section 8 and look at the table, we find that the cusps on X0(6) are :  0,
2
1 ,

3
1 , ∞.

The divisors of each of the ∆ ’s are given by:

)()(3)(2)0(6)(
3
1

2
1

1 ∞+++=∆

)(2)(6)()0(3)(
3
1

2
1

2 ∞+++=∆

)(3)()(6)0(2)(
3
1

2
1

3 ∞+++=∆

)(6)(2)(3)0()(
3
1

2
1

6 ∞+++=∆

So using a little linear algebra, we set up and solve a system of equations for the powers
of the eta-functions.  The 4x4 matrix comes from the divisors of the ∆ ’s.  The ri’s are the
respective powers for the iη ’s.  The entries in the column vector on the right must add up
to zero since X0(6) is an algebraic curve and we have used multiples of 24 since the η’s
are 24th roots of the ∆ ’s.  We have entered them such that they represent the function f
having divisor (f) = (0) – (∞).
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Solving this gives us our powers for the eta-product.
r1 = 5, r2 = -1, r3 = 1, r6 = -5

We can now find our parameter for X0(6), call it h6.

Thus, h6 = 5
62

3
5

1

))((

)()(

ηη
ηη

(4.1)

We now have to check and make sure that h6 is a function on X0(6).
1. 24mod0241*)5(2*13*)1(6*5 ≡=−++−+
2. 24mod0246*)5(3*12*)1(1*5 ≡−=−++−+
3. 05115 =−+−
4. ( )( )( )( ) 25

3
15 72126 =

So it checks out Ligozat.

Finally, we will find the equation for 1π *(h2) where h2 is the parameter on X0(2).

Using the cusp ramification diagrams of Section 7, we find that
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( 1π *(h2)) = 3(0) + (
3
1 ) – 3(

2
1 ) – (∞) (4.2)

We need to get all of the poles at ∞ since that implies we have a polynomial in h6.  This

means that we first need to figure out the coordinate of 
2
1 .  This is quite simple to do for

genus zero curves.  We go back to the matrix above that we used to get h6 and we now

find an eta-product with divisor (x) = (
2
1 ) – (∞).  So we find that:

9
6

3
1

9
3

3
2

)()(

)()(
x

ηη

ηη
= (4.3)

Now, we use the definition of iη  to get the q-expansion of x and the q-expansion of h6

and then we can compare the q-expansions.  It is important to note that the q-expansion
are based on ∞, so if all the poles are at ∞ and there are k poles there, then the q-
expansion starts with the term q-k.  Also, since this is a genus zero curve, all functions
with a single pole at infinity like h6 must only differ from h6 by a constant.

We find that h6(q) = q-1 – 5 + 10q – 16q2 + 35q3 – 66q4  …
and that x(q) = q-1 + 3 + 10q – 16q2 + 35q3 – 66q4  …

By inspection we can see that h6+8 = x, which is to say that h6( 2
1 ) = x(

2
1 ) – 8 = 0– 8 = -8

So the coordinate of 
2
1  is –8.

Now, back to the problem at hand.

We know that ( 1π *(h2)) = 3(0) + (
3
1 ) – 3(

2
1 ) – (∞)

and we just found that (h6+8) = (
2
1 ) – (∞),

so then (( 1π *(h2)) (h6+8)3) = 3(0) + (
3
1 ) – 3(

2
1 ) – (∞) + 3(

2
1 ) – 3(∞) = 3(0) + (

3
1 ) – 4(∞).

Now, multiplying the q-expansions of  1π *(h2) and (h6+8)3 we find that

( 1π *(h2)) (h6+8)3 = h6
3(h6+9)

And so we get 1π *(h2) = 
3

6

6
3
6

)8(

)9(

+
+

h

hh

5  Special Case of Group Structure on Genus One Curve X0(36)

A corollary of the Riemann-Roch theorem, as stated in [Sil], says that
If deg(D) > 2g – 2, then l (D) = deg(D) +1 – g
where l (D) is the number of linearly independent functions with poles at most on D.
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For all genus one curves, this implies that if we pick any point such that D = (P),
then deg(D) = 1 > 2*1-2 =0.  Therefore, l (D) = 1+1–1 = 1

This implies that the one linearly independent function is just the family of
constant functions.  Thus there is no non-constant function with a single pole at P
for any point P.

Now pick D = 2(P).  Then l (D) = 2+1–1 = 2.  This implies there exists an x with
(x) = (Q)+(R)–2(P) where Q and R are points on the curve.

Now pick D = 3(P).  Then l (D) = 3+1–1 = 3.  This implies there exists a y with
(y) = (A)+(B)+(C)–3(P) where A, B and C are points on the elliptic curve.

Now pick D = 6(P).  Then l (D) = 6+1–1 = 6.  However, we have 7 functions in the
basis for this: 1, x, y, x2, xy, x3, y2.  Therefore x and y satisfy an elliptic equation
of the form y2 = ax3+bxy+cx2+dy+ex+f.  This is known as the Weierstrass
Equation and every genus one curve has this property.  In particular, the
Weierstrass Equation for the genus one curve studied here can be found in section
6 under X0(36).

It is always possible to define a group structure on these kinds of (genus one) curves with
the following construction.  Since the Weierstrass Equation is a cubic, any straight line
crossing one of the points on the curve, must cross exactly three points on the curve.  We
must note, though, that we include the point at infinity as being on the curve and is the
additive identity for the group.  Also note that if the line is tangent to the curve then that
will count as more than one crossing of the curve.  Knowing all that, then addition on the
curve works as follows:

If P and Q are points on the curve, and the straight line connecting them also crosses
the curve in another spot then that point equals –(P+Q).

The above formulation of addition on the curve X0(N) is equivalent to saying that:
If P and Q are points on the curve, then P+Q=R if and only if there exists a function f
on X0(N) such that the divisor of f has the property that

(f) = (R) + (∞) � (P) � (Q) (5.1)

Example 5.1

On X0(36), the point 0 + the point 
2
1  = the point ∞ since we can look at the function

given by our parameter x which has divisor (x) = (0) + (
2
1 ) – 2(∞) as can be seen in

section 6.  Therefore, the function 
x
1  has divisor (

x
1 ) = (∞) + (∞) � (0) � (

2
1 ).

It is natural to ask how the special points from the modular curve view of X0(N), i.e. the
cusps, relate to the group structure of the curve.  There is a general theorem stating that
the cusps have a finite order which implies that there is a finite subgroup containing all of
the cusps.  What is really surprising here though, was that the “good” cusps – the non-

Galois conjugate cusps – formed a group of their own isomorphic to Z
Z

6 , and then that

the complete set of cusps create a group isomorphic to ( ) ( )Z
Z

Z
Z

2 x6 .
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Group Structure on cusps:  isomorphic to ( ) ( )Z
Z

Z
Z

2 x6

+ ∞ 0 18
1

4
1

9
1

2
1

12
5

3
1

6
1

12
1

3
2

6
5

∞ ∞ 0 18
1

4
1

9
1

2
1

12
5

3
1

6
1

12
1

3
2

6
5

0 0 18
1

4
1

9
1

2
1 ∞ 3

1
6
1

12
1

3
2

6
5

12
5

18
1

18
1

4
1

9
1

2
1 ∞ 0 6

1
12
1

3
2

6
5

12
5

3
1

4
1

4
1

9
1

2
1 ∞ 0 18

1
12
1

3
2

6
5

12
5

3
1

6
1

9
1

9
1

2
1 ∞ 0 18

1
4
1

3
2

6
5

12
5

3
1

6
1

12
1

2
1

2
1 ∞ 0 18

1
4
1

9
1

6
5

12
5

3
1

6
1

12
1

3
2

12
5

12
5

3
1

6
1

12
1

3
2

6
5 ∞ 0 18

1
4
1

9
1

2
1

3
1

3
1

6
1

12
1

3
2

6
5

12
5 0 18

1
4
1

9
1

2
1 ∞

6
1

6
1

12
1

3
2

6
5

12
5

3
1

18
1

4
1

9
1

2
1 ∞ 0

12
1

12
1

3
2

6
5

12
5

3
1

6
1

4
1

9
1

2
1 ∞ 0 18

1

3
2

3
2

6
5

12
5

3
1

6
1

12
1

9
1

2
1 ∞ 0 18

1
4
1

6
5

6
5

12
5

3
1

6
1

12
1

3
2

2
1 ∞ 0 18

1
4
1

9
1
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6  Information on X0(N) for N = {factors of 36}

The following information is the main result of my work.  All of the terms have been
defined and explained in the above sections.  The reader is encouraged to check their
understanding of the ideas presented here by working out a few of the results given below
for themselves.

X0(2)

Genus = 0

Parameter:

h2 = 
24

2

1






η
η

h2(q) = q-1 – 24 + 276q - 2048q2 + 11202q3 …

(h2) = (0) – (∞)

Cusps and Coordinates of Cusps:

Cusp c Coordinate h2(c) Eta-product with divisor (c) – (∞)
0 0 h2

∞ ∞ --

Moduli-Theoretic Maps:

π1: X0(2) → X(1)

π1
*(j)= 

2
2

3
2 )256(

h

h +

π2: X0(2) → X(1)

π2
*(j) = 

2

3
2 )16(

h

h +

w2: X0(2) → X0(2)

w2
*(h2)= 

2

4096

h
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X0(3)

Genus = 0

Parameter:

h3 = 
12

3

1






η
η

h3(q) = q-1 – 12 + 54q – 76q2 – 243q3 + 1188q4 – 1384q5 …

(h3) = (0) – (∞)

Cusps and Coordinates of Cusps:

Cusp c Coordinate h3(c) Eta-product with divisor (c) – (∞)
0 0 h3

∞ ∞ --

Moduli-Theoretic Maps:

π1: X0(3) → X(1)

π1
*(j) = 

3
3

3
33 )243)(27(

h

hh ++

π3: X0(3) → X(1)

π3
*(j) = 

3

3
33 )3)(27(

h

hh ++

w3: X0(3) → X0(3)

w3
*(h3)= 

3

729

h
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X0(4)

Genus = 0

Parameter:

h4 = 
8

4

1






η
η

h4(q) = q-1 – 8 + 20q – 62q4 + 216q6 – 641q8  …

(h4) = (0) – (∞)

Cusps and Coordinates of Cusps:

Cusp c Coordinate h4(c) Eta-product with divisor (c) – (∞)
0 0 h4

2
1 -16 16

4
8

1

24
2

)()(

)(

ηη
η

∞ ∞ --

Moduli-Theoretic Maps:

π1: X0(4) → X0(2)

π1
*(h2) = 

164

2
4

+h

h

π2: X0(4) → X0(2)

π2
*(h2) = )16( 44 +hh

w4: X0(4) → X0(4)

w4
*(h4)= 

4

256

h
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X0(6)

Genus = 0

Parameter:

h6 = 
5

62

3
5

1

))((

)()(

ηη
ηη

h6(q) = q-1 – 5 + 10q – 16q2 + 35q3 – 66q4  …

(h6) = (0) – (∞)

Cusps and Coordinates of Cusps:

Cusp c Coordinate h6(c) Eta-product with divisor (c) – (∞)
0 0 h6

2
1 -8 9

6
3

1

9
3

3
2

)()(

)()(

ηη
ηη

3
1 -9 8

6
4

1

4
3

8
2

)()(

)()(

ηη
ηη

∞ ∞ --

Moduli-Theoretic Maps:

π1: X0(6) → X0(3)

π1
*(h3) = 

2
6

6
2
6

)9(

)8(

+
+

h

hh

π3: X0(6) → X0(3)

π2
*(h3) = 

9

)8(

6

2
66

+
+

h

hh

w2: X0(6) → X0(6)

w2
*(h6)= 





+
+−

8

9
8

6

6

h

h

π1: X0(6) → X0(2)
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π1
*(h2) = 

3
6

6
3
6

)8(

)9(

+
+

h

hh

π3: X0(6) → X0(2)

π3
*(h2) = 

8

)9(

6

3
66

+
+

h

hh

w3: X0(6) → X0(6)

w3
*(h6)= 





+
+−

9

8
9

6

6

h

h
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X0(9)

Genus = 0

Parameter:

h9 = 
3

9

1






η
η

h9(q) = q-1 – 3 + 5q2 – 7q5 + 3q8 + 15q11 …

(h9) = (0) – (∞)

Cusps and Coordinates of Cusps:

Cusp c Coordinate h9(c) Eta-product with divisor (c) – (∞)
0 0 h9

3
1 ,

3
2 roots of 0279 9

2
9 =++ hh --

∞ ∞ --

Moduli-Theoretic Maps:

π1: X0(9) → X0(3)

π1
*(h3) = 

279 9
2
9

3
9

++ hh

h

π3: X0(9) → X0(3)

π3
*(h3) = )279( 9

2
99 ++ hhh

w9: X0(9) → X0(9)

w9
*(h9)= 

9

27

h
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X0(12)

Genus = 0

Parameter:

h12 = 
3

123
2

2

2
64

3
1

))(()(

))(()(

ηηη
ηηη

h12(q) = q-1 – 3 + 2q + q3 – 2q7 – 2q9 + 2q11 + …

(h12) = (0) – (∞)

Cusps and Coordinates of Cusps:

Cusp c Coordinate h12(c) Eta-product with divisor (c) – (∞)
0 0 h12

2
1 -6 2

126
2

4
3

1

3
7

2

))(()()(

)()(

ηηηη
ηη

3
1 -4 3

121

4
3

3

))((

)()(

ηη
ηη

4
1 -3 4

12
2

2

2
6

4
4

)()(

)()(

ηη
ηη

6
1 -2 6

12
3

3
3

2

9
6

2
41

)()()(

)())((

ηηη
ηηη

∞ ∞ --

Moduli-Theoretic Maps:

π1: X0(12) → X0(6)

π1
*(h6) = 

212

2
12

+h

h

π2: X0(12) → X0(6)

π2
*(h6) = )6( 1212 +hh

w4: X0(12) → X0(12)
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w4
*(h12) = 





+
+−

4

3
4

12

12

h

h

π1: X0(12) → X0(4)

π1
*(h4) = 

3
12

12
3
12

)3(

)4(

+
+

h

hh

π3: X0(12) → X0(4)

π3
*(h4) = 

3

)4(

12

3
1212

+
+

h

hh

w3: X0(12) → X0(12)

w3
*(h12) = 





+
+−

3

4
3

12

12

h

h
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X0(18)

Genus = 0

Parameter:

h18 = 
2

1832

96
2

1

))()((

))(()(

ηηη
ηηη

h18(q) = q-1 – 2 + q2 + q5 – q8 – q11 …

(h18) = (0) – (∞)

Cusps and Coordinates of Cusps:

Cusp c Coordinate h18(c) Eta-product with divisor (c) – (∞)
0 0 h18

2
1 -3 2

181

9
2

2

))((

)()(

ηη
ηη

3
1 ,

3
2 roots of 0126 18

2
18 =++ hh --

6
1 ,

6
5 roots of 033 18

2
18 =++ hh --

9
1 -2 3

183

3
96

))((

))((

ηη
ηη

∞ ∞ --

Moduli-Theoretic Maps:

π1: X0(18) → X0(9)

π1
*(h9) = 

2
18

18
2
18

)2(

)3(

+
+

h

hh

π2: X0(18) → X0(9)

π2
*(h9) = 

)2(

)3(

18

2
1818

+
+

h

hh

w2: X0(18) → X0(18)
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w2
*(h18) = 





+
+−

2

3
2

18

18

h

h

π1: X0(18) → X0(6)

π1
*(h6) = 

33 18
2
18

3
18

++ hh

h

π3: X0(18) → X0(6)

π3
*(h6) = )126( 18

2
1818 ++ hhh

w9: X0(18) → X0(18)

w9
*(h18) = 





+
+−

3

2
3

18

18

h

h
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X0(36)

Genus = 1

Parameters:

x = x36 = 
2

3664

1812
2

2

))()((

))(()(

ηηη
ηηη

x = x36(q) = q-2 – 2 + q4 + q10 – q16 – q22 …

(x) = (0) + (
2
1 ) – 2(∞)

y = 
3

3632

18129
2

1

))()((

))()(()(

ηηη
ηηηη

y(q) = q-3 – 2q-2 + 1 + 2q3 – 2q4 + q9 …

(y) = 2(0) + (
9
1 ) – 3(∞)

y2 = x3 – 4xy + 2x2 – 6y

Cusps and Coordinates of Cusps:

Cusp c Coordinate x(c) Coordinate y(c)
0 0 0

2
1 0 -6

3
1 ,

3
2 roots of 01262 =++ xx roots of  048122 =+− yy

4
1 -3 3

6
1 ,

6
5 roots of 01262 =++ xx roots of 0122 =+y

9
1 -2 0

12
1 ,

12
5 roots of 0332 =++ xx roots of 032 =+y

18
1 -2 2

∞ ∞ ∞

Moduli-Theoretic Maps:

π1: X0(36) → X0(18)

π1
*(h18) = 

2+x

y
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π2: X0(36) → X0(18)

π2
*(h18) = x

w4: X0(36) → X0(36)

w4
*(x, y) = 

















++
+−

42

)3(4
,

)3(2

2

2

xy

x

y

xyx

π1: X0(36) → X0(12)

π1
*(h12) = 

33

3

2

2

++

+−

xx

yxxy

π3: X0(36) → X0(12)

π3
*(h12) = xy 2+

w9: X0(36) → X0(36)

w9
*(x, y) = 

















+

−−−

+
+−

2

2

)3(

2(3
,

3

)2(3

x

xxy

x

x
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7  Cusp Ramification Diagrams

These diagrams are convenient visual aides in trying to figure out how different cusps
ramify over certain curves.  Analogously to towers of field extensions, the indices
multiply in the obvious way in order to “skip” a curve.

Example 7.1

To find the index of the cusp 
3
1  in X0(18) over the cusp 0 in X0(3), by 3π  can be

done in either of two ways:  we could look at the tower

)3(X)9(X)18(X 000
31 →→ ππ

, or we could look at the tower

)3(X)6(X)18(X 000
13 →→ ππ

.  The first tower and referencing below tells us

that the index of the cusp 
3
1  in X0(18) over the cusp 

3
2  in X0(9), by 1π is 2 and that

the index of the cusp 
3
2  in X0(9) over the cusp 0 in X0(3), by 3π is 1.  Therefore we

get that the index of the cusp 
3
1  in X0(18) over the cusp 0 in X0(3), by 3π is 2 by

multiplying the indices and composing the dπ ’s.  It is left to the reader to check that

they both give the same answer.

The indices in these diagrams were calculated using the Moduli-Theoretic approach to
the curves.  However, since this paper has taken the classical approach to modular curves,
we give a description below on how to calculate the indices using the classical approach.
Note that the method below gives the index for a cusp c in X0(N) over the cusp ∞ in X(1).
It is then necessary to use the above tower manipulations to find out what the index of a
cusp c in X0(N) is over a cusp m in X0(M).

First it is necessary to choose a basis for the left cosets of N)(0Γ
Γ .  This is to say that a

set of elements of Γ  which are not in )N(0Γ , },...{ 0 kγγ , must be chosen such that

1) Every element of )N(0Γ is in one of the equivalence classes k0,...,ifor  =Γγi  and

2) that none of the iγ  are equivalent.

Checking condition 1 is just checking that any arbitrary element of )N(0Γ can be

represented in at least one of the equivalence classes.  Checking condition 2 amounts to

checking that )N(0
1 Γ∉γγ −

ij , which means that any arbitrary element of )N(0Γ can be

represented in at most one of the equivalence classes.

Now we note that from [K], U
k

i
i

1

1F
=

−γ  is a fundamental domain for )N(0Γ , where F is the

fundamental domain for Γ  given by equation (2.4).
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For each element iγ  of B which takes ∞ to c (or an equivalent point modulo )N(0Γ ), we

do the following manipulation.  We pick an arbitrary element z in F such that

2
1

2
1 )zRe( ≤≤−  and Im(z)>>0 so that z is near the cusp ∞ in X0(N) .  We act on z first by

1−γi , then by dπ , then by Ai where Ai is a matrix in Γ which takes the resulting

coefficients of z to ∞ in X(1).  That is, 







−

=







=γ

deg

sr
A then ,

hg

fe
 if i

1-
i  where r and

s are integers such that Γ∈iA  (which can be found using the Chinese Remainder
Theorem again).  We then count how many times each of the resulting expressions,
acting on F, cover our original fundamental domain F.

Example 7.2
Find the index of the cusp ∞ in X0(2) for 2π .  First of all we need a basis B for the

left cosets of 2)(0Γ
Γ .

Let 
















=γ








=γ








=γ=

11

12
,

11

01
,

10

01
210B  be our basis.

Checking condition 1 we note that 0
1

0 γ=γ − , that 22
-1

011
-1

0  and γ=γγγ=γγ , and

neither of these are in )2(0Γ .  Also 







−

=















−

=γγ −
01

12

11

12

11

01
2

1
1  which is also

clearly not in )2(0Γ .  It is left to the reader to check that condition 2 hold for B.

Well, 0γ (∞) = ∞, 1
1
−γ (∞) = -1, and 1

2
−γ (∞) = �1.  However we know that �1 ~ 0 as

)N( and 0
10

11
)1(

10

11
)1( 0Γ∈γ=

+
+−=−








=−γ .  So for the index of the cusp 0 in

X0(2) for 2π , we must then look at 1γ  and 2γ .  For the index of the cusp ∞ in X0(2)

for 2π , we just have to look at 0γ .









=→→→ πγ

10

01
A  wherez2z2zz 0

A 020 .  Now 2z covers F twice.  This

can be seen by letting 2z act on F (i.e. we let z range through all of the points in F).
We clearly get a domain, call it F', which has the same form as F but is twice as wide.
Those points of F' which are also in F cover F once.  The points outside of F are
equivalent to points in F modulo SL2(Z) and cover F once again.

A similar procedure (left to the reader) will show that each of 1γ  and 2γ  cover a
different half of F and they combine to cover F one time total.
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X0(2) 0 ∞

π1: 2 1

X(1) ∞

X0(2) 0 ∞

π2: 1 2

X(1) ∞

X0(3) 0 ∞

π1: 3 1

X(1) ∞

X0(3) 0 ∞

π3: 1 3

X(1) ∞

X0(4) 0
2
1 ∞

π1: 2 1 1

X0(2) 0 ∞

X0(4) 0
2
1   ∞

π2: 1 1 2

X0(2)  0   ∞

X0(6) 0
2
1

3
1 ∞

π1: 2 1 2 1

X0(3)  0 ∞
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X0(6) 0
2
1

3
1 ∞

π2: 1 2 1 2

X0(3)  0 ∞

X0(6) 0
3
1

2
1 ∞

π1: 3 1 3 1

X0(2)  0 ∞

X0(6) 0
3
1

2
1 ∞

π3: 1 3 1 3

X0(2)  0 ∞

X0(9) 0  
3
1  

3
2 ∞

π1: 3 1 1 1

X0(3) 0   ∞

X0(9) 0  
3
1

3
2 ∞

π3: 1 1 1 3

X0(3) 0 ∞
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X0(12) 0
2
1

4
1   

3
1

6
1 ∞

π1: 2 1 1 2 1 1

X0(6) 0
2
1   

3
1 ∞

X0(12) 0
2
1  

4
1

3
1

6
1   ∞

π2: 1 1 2 1 1 2

X0(6)  0  
2
1

3
1   ∞

X0(12) 0
3
1

2
1

6
1

4
1   ∞

π1: 3 1 3 1 3 1

X0(4)  0
2
1 ∞

X0(12) 0
3
1

2
1

6
1

4
1   ∞

π3: 1 3 1 3 1 3

X0(4)  0
2
1 ∞

X0(18) 0
2
1

3
1

6
5

3
2

6
1

9
1 ∞

π1: 2 1 2 1 2 1 2 1

X0(9)  0
3
1

3
2 ∞

X0(18) 0
2
1

3
2

6
1

3
1

6
5

9
1 ∞

π2: 1 2 1 2 1 2 1 2

X0(9)  0
3
1

3
2 ∞
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X0(18) 0  
2
1  

3
1  

3
2

9
1

6
1  

6
5 ∞

π1: 3 3 1 1 1 1 1 1

X0(6) 0  
2
1   

3
1   ∞

X0(18) 0  
3
1

3
2

2
1  

6
1

6
5  

9
1 ∞

π3: 1 1 1 1 1 1 3 3

X0(6)   0  
2
1  

3
1 ∞

X0(36) 0
2
1

4
1   

3
1

3
2

9
1

6
1

12
5

6
5

12
1

18
1 ∞

π1: 2 1 1 2 2 2 1 1 1 1 1 1

X0(18) 0
2
1   

3
1

3
2

9
1

6
1

6
5 ∞

X0(36) 0
2
1  

4
1  

3
2

6
1

3
1

6
5

9
1

18
1  

12
1  

12
5   ∞

π2: 1 1 2 1 1 1 1 1 1 2 2 2

X0(18)  0   
2
1

3
1

3
2

9
1  

6
1  

6
5   ∞

X0(36) 0   
2
1

3
1  

3
2

9
1  

4
1

6
1  

6
5  

18
1

12
1  

12
5 ∞

π1: 3 3 1 1 1 3 1 1 1 1 1 1

X0(12) 0   
2
1   

3
1  

4
1  

6
1   ∞

X0(36) 0  
3
1  

3
2

2
1  

6
1   

6
5   

9
1

4
1

12
1  

12
5  

18
1   ∞

π3: 1 1 1 1 1 1 3 1 1 1 3 3

X0(12)   0  
2
1   

3
1  

4
1  

6
1   ∞
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8  Divisors of X0(N) for N = {factors of 36}

The following is merely an extension of the above section.  The divisor of k∆  in X0(N),
for all k dividing N, were each computed using the cusp ramification diagrams from
section 7 and then laid out in the table below.  To calculate the divisor for any specific

k∆  in any specific X0(N), it is necessary to choose an appropriate tower of curves such

that it starts at X0(N) and goes all the way down to X(1) and that the 
idπ ’s are chosen

such that the product over the di’s equals k.  For example, the tower

1)(X2)(X6)(X12)(X 132

000 →→→ πππ
 gives the divisor of )12(Xin  06∆ .

N Divisors for X0(N)

2
21

120

))(())(( 2

∞

∆∆ qq

3

31

130

))(())(( 3

∞

∆∆ qq

4

421

121

1240

))(())(())((

2
1

42

∞

∆∆∆ qqq

6

6321

2163

3612

12360

))(())(())(())((

2
1
3
1

632

∞

∆∆∆∆ qqqq

9

931

131

1390

))(())(())((

3
2

3
1

93

∞

=

∆∆∆ qqq
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12

1264321

123163

3611224

4212163

361321

12346120

))(())(())(())(())(())((

2
1
3
1
4
1
6
1

126432

∞

∆∆∆∆∆∆ qqqqqq

18

1896321

2163189

123612

216321

9183612

12369180

))(())(())(())(())(())((

2
1

3
2

3
1

6
5

6
1

9
1

189632

∞

=

=

∆∆∆∆∆∆ qqqqqq

36

31812964321

231693189

234611224

21216363189

23161321

18336611224

212164321

183961321

234691218360

(())(())(())(())(())(())(())(())((

2
1

3
2

3
1

4
1

6
5

6
1

9
1

12
5

12
1

18
1

181296432

∞

=

=

=

∆∆∆∆∆∆∆∆∆ qqqqqqqqq
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9  Quick Matlab program to find the cusps of X0(N)

This function is best used to find out what the cusps are on X0(N).  The points eligible to

be cusps on X0(N) are those fractions 
q
p  between 0 and 1, inclusive, such that q divides N

and p ranges from 0 to q.  Clearly, we can assume that 
q
p  is in lowest terms as well.

Note:  for all N, 0 ~ 1 and 
N
1 ~ ∞, since









10

11
 and 








1N

01
 are in Γ0(N) for all N and















)0(

10

11
f  = 1 and 





∞








)(

1N

01
f  = 

N
1

Example 9.1:  Look at X0(12)

The eligible cusps are then:  0,
2
1 ,

3
1 ,

3
2 ,

4
1 ,

4
3 ,

6
1 ,

6
5 , ∞

It is then quick to check that 
3
1 ~

3
2 ,

4
1 ~

4
3 ,

6
1 ~

6
5  using the program.  So then our cusps

on X0(12) would be:  0,
2
1 ,

3
1 ,

4
1 ,

6
1 , ∞

function y=congruent(p, q, r, s, N, k)
%This function will find matrices of SL_2(Z)
%such that [a b;c d](p/q)=(r/s) in X_0(N).
%  Note: (p/q) and (r/s) must be in lowest terms.
%  Note: 0 = (0/1).  It can't check if p/q ~ infinity,
%            but that is easy enough to do by hand since
%            [a b;c d](infinity) = a/c.
for x=-k:k
    [(N*r*x+q)/s (r-p*((N*r*x+q)/s))/q;N*x (s-p*N*x)/q]
end
%k is just a guess on the number of matrices to check to see if p/q ~ r/s
%k=10 is usually more than sufficient

Now you just have to look and see if any of the resulting matrices have all integer entries.

If so, then 
q
p ~

s
r .  If not, then 

s
r

q
p

~/ .
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