Rose-Hulman - Department of Mathematics - Course Syllabus
MA101 - Introductory Calculus - 2010-11

Description & Prerequisites Course Goals Texts and Other Materials
Course Topics Course Policies Links
last posted to site: 08/19/10  

Parts of the web page to be completed or determined by the instructor are in green.

MA101 and MA102 combined are equivalent to MA111, except that more than usual attention is paid to review and practice. Depending on the class the amount of MA111 material covered will vary though it is expected that the non-italicized Course Goals, Course Topics, and perfomance standards, given below, will be covered. The instructors for MA101 and MA102 will collaborate on which set of topics will be covered in each course.

Catalogue Description and Prerequisites

MA 101 Introductory Calculus 5R-0L-2C F (5 weeks)
Covers approximately the first half of MA 111, including analytic geometry in the plane, algebraic and transcendental functions, limits and continuity, and an introduction to differentiation. Entering first-year students will enroll in MA 111 and transfer to MA 101 if continuation of MA 111 is not appropriate.

Prerequisite: It is assumed that the student has a mastery of high school algebra, pre-calculus and trigonometry concepts.

Course Goals

  1. Introduce students to differential calculus; see topics 1, 2, and 3 below in Topics Covered below for specific topics.
  2. Time permitting, introduce students to the application of differential calculus in science and engineering; see topic 4 below in Topics Covered.
  3. Develop student mathematical modeling and problem solving skills.
  4. Develop student ability to use a computer algebra system (CAS) to aid in the analysis of quantitative problems.  This includes (but is certainly not limited to) mastery of the commands listed in Performance Standards below.
  5. Develop student ability to communicate mathematically.
  6. Introduce applications of mathematics, especially to science and engineering.

Textbook and other required materials

Textbook: Thomas' Calculus - Early Transcendentals Twelvth Edition - Weir, Hass, Giordano
Supplement: Just in Time - bundled with text.
Computer Usage:  Maple14 must be available on your laptop.

Course Topics

  1. Functions and Pre-Calculus review
  2. Limits and Continuity

  3. Differentiation
  4. Applications of derivatives

Course Requirements and Policies

The following policies and requirements will apply to all sections:

Computer Usage

A summary of the computer policy page:

Students will be expected to demonstrate a minimal level of competency with a relevant computer algebra system. The computer algebra system will be an integral part of the course and will be used regularly in class work, in homework assignments and during quizzes/exams. Students will also be expected to demonstrate the ability to perform certain elementary computations by hand. (See Performance Standards below.)

Performance Standards/Final Exam Policy

With regard to be "by hands" computational skills, each student should be able to

  1. Differentiate polynomials, exp(x), ln(x), sin(x), cos(x), tan(x), sec(x), arcsin(x), and arctan(x) with respect to x, and linear combinations of these functions.
  2. Be able to apply the product, quotient and chain rules for simple, routine differentiation problems.
  3. Be able to perform implicit differentiation. (if covered)

These by-hands skills may be tested using in class quizzes.

With regard to basic Maple commands, by the end of MA 101 every student should be able to

  1. Use Maple to do arithmetic calculations and function evaluations.
  2. Use the evalf command correctly and know when this is appropriate.
  3. Use the expand, simplify, and subs commands to manipulate algebraic expressions.
  4. Use the plot command to plot single or multiple functions and parametric curves, with appropriate scaling.
  5. Use the solve and fsolve commands.
  6. Use the diff command.

Final Exam Policies

The following is an extract from the final exam policy page. Consult the policy page for complete details.

The final exam will consist of two parts. The first part will be "by hands" (paper, pencil). No computing devices (calculators/computers) will be allowed during the first part of the final exam. This part of the exam will cover both computational fundamentals as well as some conceptual interpretation, though the level of difficulty and depth of conceptual interpretation must take into account that this part of the exam will be shorter than the second part of the exam.  The laptop, starting with a blank Maple work sheet, and a calculator, may be used during the second part of the exam. No "cheat sheets", prepared Maple worksheets or prepared program on the calculator may be used. The second part of the exams will cover all skills: concepts, calculation, modeling, problem solving, and interpretation.

Individual Instructor Policies

Your instructor will determine the following for your class: *Note that most instructors will enforce some type of grade penalty for students with more than four unexcused absences.

Go to