

Panel 1

Prior to Le10

Instruction Cycles and Special Function Registers

1

ME430 Mechatronics

Panel 2

Instruction Cycles and Special Function Registers

Special Function Registers

General Pin Input/Output (GPIO)

ADCON1

TRISx

PORTx

Instruction Cycles

Clock Frequency

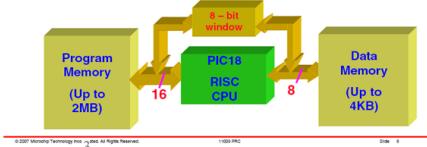
Instruction cycle frequency

Delays

2

Panel 3

What is a Special Function Register (SFR)?


Table 1: SFRs vs. Variables

Common variable	SFR
char x;	(defined within the p18f4520.h file)
x = 0x5A;	PORTB = 0x5A;

Harvard Architecture

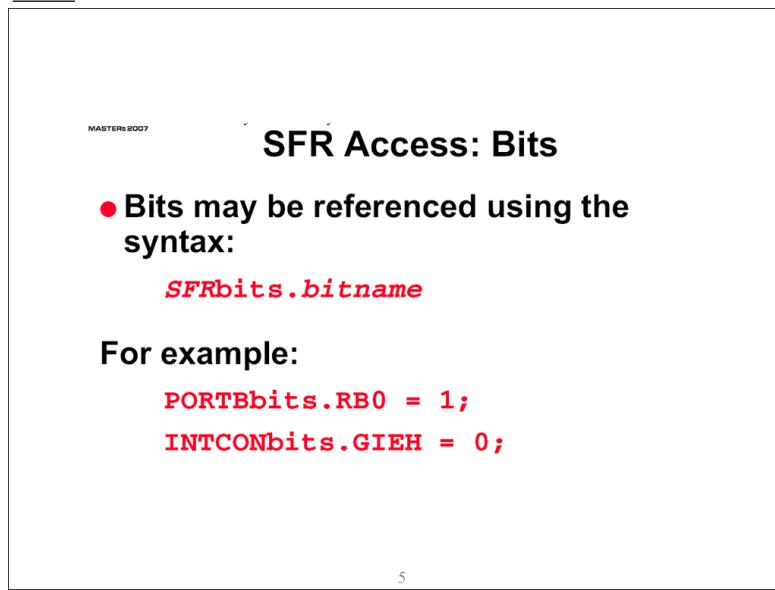
- 8-bit microcontroller
- 16-bit Instruction width
- Data Transfer Mechanism between PM and DM

© 2007 Microchip Technology Inc. All Rights Reserved.

Panel 4

Examples of SFRs that we'll use

ADCON1


TRISA	PORTA
TRISB	PORTB
TRISC	PORTC
TRISD	PORTD
TRISE	PORTE

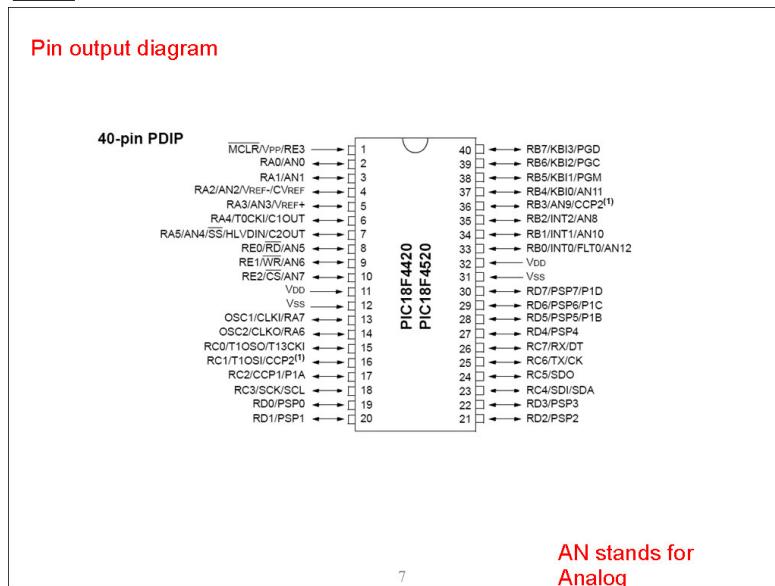
OSCCON

(Plus a TON more, but they are behind the scenes used by the compiler)

4

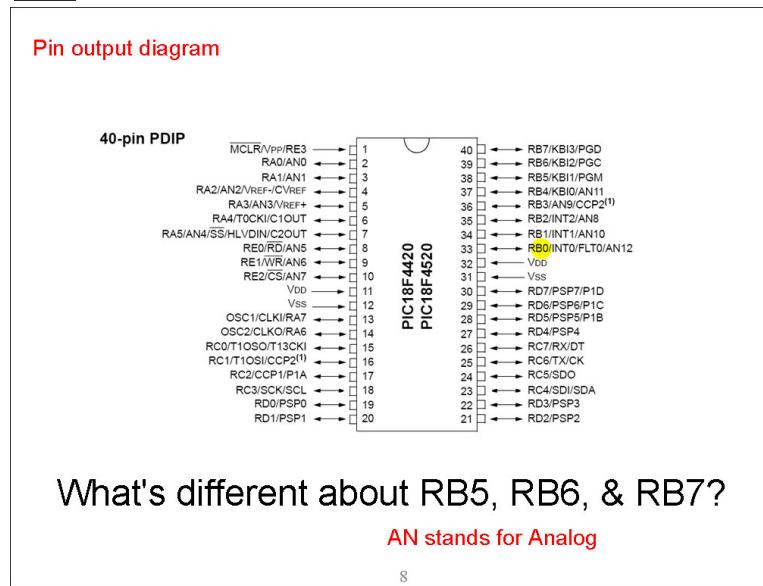
Panel 5

5


Panel 6

```
c:\MCC18\h\p18f4520.h
extern volatile near unsigned char PORTB;
extern volatile near union {
    struct {
        unsigned RB0:1;
        unsigned RB1:1;
        unsigned RB2:1;
        unsigned RB3:1;
        unsigned RB4:1;
        unsigned RB5:1;
        unsigned RB6:1;
        unsigned RB7:1;
    };
    struct {
        unsigned INT0:1;
        unsigned INT1:1;
        unsigned INT2:1;
        unsigned CCP2:1;
        unsigned KB10:1;
        unsigned KB11:1;
        unsigned KB12:1;
        unsigned KB13:1;
    };
    struct {
        unsigned AN12:1;
        unsigned AN10:1;
        unsigned AN9:1;
        unsigned AN11:1;
        unsigned PGH:1;
        unsigned PGC:1;
        unsigned PGD:1;
    };
} PORTBbits;
```

PORTB = 0 b


6

Panel 7

7

Panel 8

8

What's different about RB5, RB6, & RB7?

Panel 9

REGISTER 19-2: ADCON1 REGISTER										
U-0	U-0	R/W-0	R/W-0	R/W-0 ⁽¹⁾	R/W ⁽¹⁾					
—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	—	—	—
bit 7										
bit 5										
bit 4										
bit 3-0										
PCFG3:PCFG0: A/D Port Configuration Control bits:										
PCFG3:	AN12	AN11	AN10	AN9	AN8	AN7 ⁽²⁾	AN6 ⁽²⁾	AN5 ⁽²⁾	AN4 ⁽²⁾	AN3 ⁽²⁾
PCFG0:	—	—	—	—	—	—	—	—	—	—
0000 ⁽¹⁾	A	A	A	A	A	A	A	A	A	A
0001	A	A	A	A	A	A	A	A	A	A
0010	A	A	A	A	A	A	A	A	A	A
0011	D	A	A	A	A	A	A	A	A	A
0100	D	D	A	A	A	A	A	A	A	A
0101	D	D	A	A	A	A	A	A	A	A
0110	D	D	D	A	A	A	A	A	A	A
0111 ⁽¹⁾	D	D	D	D	A	A	A	A	A	A
1000	D	D	D	D	D	A	A	A	A	A
1001	D	D	D	D	D	D	A	A	A	A
1010	D	D	D	D	D	D	D	A	A	A
1011	D	D	D	D	D	D	D	A	A	A
1100	D	D	D	D	D	D	D	D	A	A
1101	D	D	D	D	D	D	D	D	A	A
1110	D	D	D	D	D	D	D	D	D	A
1111	D	D	D	D	D	D	D	D	D	D
A = Analog input										
D = Digital I/O										

9

Panel 10

Setting your program to use digital outs

Step 1: Setup the pins as analog or digital as needed

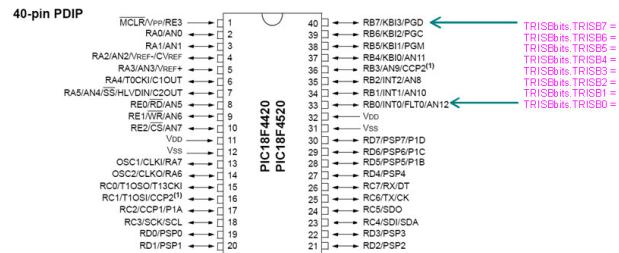
ADCON1 = 0x0F; // Everybody is digital

Step 2: Setup the pins as inputs or outputs as needed

```
TRISA = 0b00000011; // Bottom 2 pins input
TRISB = 0xF0; // Bottom 4 pins input
TRISC = 0xFF; // All inputs
TRISD = 0x00; // All outputs
TRISEbits.TRISE0 = 1; // RE0 input
TRISEbits.TRISE1 = 0; // RE1 output
TRISEbits.TRISE2 = 1; // RE2 input
```

Step 3: Use the pins

Set output lines high (1 => 5 volts) or low (0 => 0 volts)


PORTBbits.RB1 = 1; // Force RB1 high

Read input pins high (5 volts => 1) or low (0 volts => 0)
if(PORTC == 0xA) // Read PORTC

10

Panel 11

Example: There are 8 bits in TRISB and 8 pins in PORTB
Setting a bit in TRISB to a 1 makes that pin in PORTB an Input
Setting a bit in TRISB to a 0 makes that pin in PORTB an Output

Option 1: By Register (binary)
TRISB = 0b00000011;

Option 2: By Register (hex)
TRISB = 0x03;

Option 3: By bits

```
TRISBbits.TRISB7 = 0;
TRISBbits.TRISB6 = 0;
TRISBbits.TRISB5 = 0;
TRISBbits.TRISB4 = 0;
TRISBbits.TRISB3 = 0;
TRISBbits.TRISB2 = 0;
TRISBbits.TRISB1 = 1;
TRISBbits.TRISB0 = 0;
```

11

Panel 12

Example SFRs within a program

```
void main (void)
{
    ADCON1 = 0b00001111; // Sets all the pins to digital
    TRISB = 0b00000000; // Sets all the digital PORTB pins to outputs

    while (1)
    {
        PORTB = 0b0001; // Light RB0
        Delay10KTCYx (200); // Delay for 2 seconds
        PORTB = 0b1000; // Light RB3
        Delay10KTCYx (200); // Delay for 2 seconds
    }
}
```

Each of these SFR serves a specific purpose.

TRISA	= Settings make PORTA pins either inputs or outputs
TRISB	= Settings make PORTB pins either inputs or outputs
PORTA	= If A is an input you can read the values of the pins here If A is an output you can set the values of the pins here
PORTB	= If B is an input you can read the values of the pins here If B is an output you can set the values of the pins here

Panel 13

Practice: Write the statements needed to make all pins digital (not analog). Next, make the bottom 4 pins of PORTA (RA3-RA0) outputs (top 4 pins inputs). Finally set the bottom two pins high (RA0,RA1 high RA2,RA3 low)

13

Panel 14

TABLE 5-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F2420/2520/4420/4520 DEVICES

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FD0h	INDF ⁽¹⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FD0h	POSTINC2 ⁽¹⁾	FBFh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FD0h	POSTDEC2 ⁽¹⁾	FB0h	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR2H	F9Ch	(2)
FFBh	PCLATU	FD0h	PLUSW2 ⁽¹⁾	FB0h	CCP2RL	F9Bh	OSCTUNE
FFAh	PCLATH	FD0h	FSR2H	FB0h	CCP2CON	F9Ah	(2)
FF9h	PCL	FD0h	FSR2L	FB0h	__ ⁽²⁾	F99h	(2)
FF8h	TBLPTRU	FD0h	STATUS	FB0h	BAUDCON	F98h	(2)
FF7h	TBLPTRH	FD0h	TMR0H	FB0h	PWM1CON ⁽³⁾	F97h	(2)
FF6h	TBLPTRL	FD0h	TMR0L	FB0h	ECCP1AS ⁽³⁾	F96h	TRISE ⁽⁴⁾
FF5h	TABLAT	FD0h	T0CON	FB0h	CVRCON	F95h	TRISD ⁽⁴⁾
FF4h	PRODH	FD0h	__ ⁽²⁾	FB4h	CMCON	F94h	TRISC ⁽⁴⁾
FF3h	PRODL	FD0h	OSCCON	FB3h	TMR3H	F93h	TRISB ⁽⁴⁾
FF2h	INTCON	FD2h	HLVDCON	FB2h	TMR3L	F92h	TRISA ⁽⁴⁾
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	(2)
FF0h	INTCON3	FD0h	RC0N	FB0h	SPBRGH	F90h	(2)
FEFh	INDF ⁽¹⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	(2)
FE Eh	POSTINC0 ⁽¹⁾	FC0h	TMR1L	FAEh	RCREG	F8Eh	(2)
FE Dh	POSTDEC0 ⁽¹⁾	FC0h	TICON	FADh	TXREG	F8Dh	LATE ⁽⁵⁾
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD ⁽⁵⁾
FE Bh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	RCSTA	F8Bh	LATC
FE Ah	FSR0	FCAh	T2CON	FAAh	__ ⁽²⁾	F8Ah	LATB
FE 9h	FSR0	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA
FE 8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	(2)
FE 7h	INDF ⁽¹⁾	FC7h	SSPSTAT	FA7h	ECON2 ⁽¹⁾	F87h	(2)
FE 6h	POSTINC1 ⁽¹⁾	FC6h	SSPCON1	FA6h	ECON1	F86h	(2)
FE 5h	POSTDEC1 ⁽¹⁾	FC5h	SSPCON2	FA5h	__ ⁽²⁾	F85h	(2)
FE 4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	__ ⁽²⁾	F84h	PORTE ⁽⁴⁾
FE 3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	__ ⁽²⁾	F83h	PORTD ⁽⁴⁾
FE 2h	FSR1H	FC2h	ADCON1	FA2h	IPR2	F82h	PORTC
FE 1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE 0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

14

Panel 15

Instruction Cycle

Clock Frequency
 EC - External Canned Oscillator
 INTIO67 - Internal Oscillator

Setting the OSCCON Special Function Register

Instruction cycle frequency
 Assembly

Delays Library

15

Panel 16

Clock sources

External Canned Oscillator 4 MHz Only on PICDEM board

Internal oscillator

Officially less exact (still plenty exact for your needs)
 Only option when we move off the PICDEM later
 Range of values from 8 MHz to 31.25 kHz

16

Panel 17

Setting the configuration bit to choose the oscillator

```
#pragma config OSC = EC // External 4MHz crystal for PICDEM board only
#pragma config OSC = INTIO67 // Internal oscillator
```

Pick the one you want, never use both at the same time

17

Panel 18

Setting the internal oscillator

REGISTER 2-2: OSCCON REGISTER							
R/W-0	R/W-1	R/W-0	R/W-0	R ⁽¹⁾	R-0	R/W-0	R/W-0
IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0

bit 7 IDLEN: Idle Enable bit

1 = Device enters Idle mode on SLEEP instruction
0 = Device enters Sleep mode on SLEEP instruction

bit 6-4 IRCF2:IRCFO: Internal Oscillator Frequency Select bits

111 = 8 MHz (INTOSC drives clock directly)

110 = 4 MHz

101 = 2 MHz

100 = 1 MHz

011 = 500 kHz

010 = 250 kHz

001 = 125 kHz

000 = 31 kHz (from either INTOSC/256 or INTRC directly)⁽²⁾

Example code

```
void main (void)
{
    OSCCONbits.IRCF2 = 1;
    OSCCONbits.IRCF1 = 1;
    OSCCONbits.IRCF0 = 0;

    TRISB = 0;

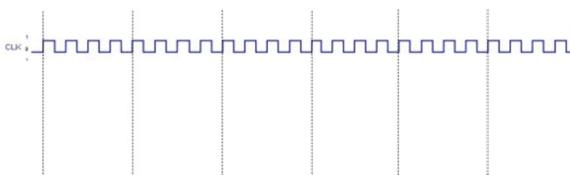
    while (1)
    {
        PORTB = 0b00000001;
        Delay10KTCYx(delayTime);

        PORTB = 0b00001000;
        Delay10KTCYx(delayTime);
    }
}
```

18

Panel 19

Modify the OSCCON bits to set the internal oscillator to 2 MHz


```
OSCCONbits.IRCF2 = __ ;
OSCCONbits.IRCF1 = __ ;
OSCCONbits.IRCF0 = __ ;
```

19

Panel 20

Instruction cycle

The Instruction cycle frequency is always _____ the clock frequency


```
ADCON1 = 0b00001111; // Sets all the pins to digital
MOVLW 0xfc
MOVWF 0xfc1, ACCESS
TRISB = 0b00000000; // Sets all the digital PORTB pins to outputs
CLRF 0xf93, ACCESS
```

20

Panel 21

Delay Functions: `#include <delays.h>`

TABLE 4-4: DELAY FUNCTIONS

Function	Description
Delay1TCY	Delay one instruction cycle.
Delay10TCYx	Delay in multiples of 10 instruction cycles.
Delay100TCYx	Delay in multiples of 100 instruction cycles.
Delay1KTCYx	Delay in multiples of 1,000 instruction cycles.
Delay10KTCYx	Delay in multiples of 10,000 instruction cycles.

```
/** Header Files *****/
#include <p18f4520.h>
#include <delays.h>

#pragma config OSC = EC // External 4MHz crystal for PICDEM board only

PORTB = 0b0001;           // Light R80
Delay10KTCYx(200);       // Delay for 2 seconds
PORTB = 0b1000;           // Light R83
Delay10KTCYx(200);       // Delay for 2 seconds
```

21

Panel 22

In the code it says this command delays for 2 seconds. Show the math:

`Delay10KTCYx(200); // Delay for 2 seconds`

Clock Frequency =

Instruction Cycle Frequency =

Period of the Instruction Cycle =
(aka the time needed for 1 instruction)

Number of Instruction generated by this command =

Resulting delay time = _____ * _____ = 2 seconds

22