PROJECT MOTOR DRIVING FAQs
• Q: Why does the magic smoke come out of my (Hbridge/MOSFET) when I try to run my motor?
• A: The chip got too hot.
How hot?

Very hot
(click here)
• Q: But I checked the Amps on the (Hbridge/MOSFET) data sheet and it should be ok.

• A: You need to check the power on the data sheet as well:

Continuous output current, \(I_O \) .. \(\pm 1.1 \) A
Continuous total power dissipation at (or below) 25°C free-air temperature (see Note 2) 2075 mW

2 W gives you very little current if you are running at 12V.
• Q: My driver chip doesn’t have that kind of power number on it. It has stuff like

Continuous output current, \(I_O \): L293	\(\pm 1 \) A
Continuous output current, \(I_O \): L293D	\(\pm 600 \) mA
Package thermal impedance, \(\theta_{JA} \) (see Notes 2 and 3): DWP package	TBD°C/W
N package	67°C/W
NE package	TBD°C/W
Maximum junction temperature, \(T_J \)	150°C

NOTES:
1. All voltage values are with respect to the network ground terminal.
2. Maximum power dissipation is a function of \(T_J(max) \), \(\theta_{JA} \), and \(T_A \). The maximum allowable power dissipation at any allowable ambient temperature is \(P_D = (T_J(max) - T_A)/\theta_{JA} \). Operating at the absolute maximum \(T_J \) of 150°C can affect reliability.
3. The package thermal impedance is calculated in accordance with JESD 51-7.

• A: Make the calculation described in note 2. There is a book excerpt posted on the course web page that explains this in more detail.
• Q: Ok, my chip can’t handle the power. Now what do I do?

• A: You have two choices:
 – Get the chip cooler, so it can dissipate more power
 – Get a new motor driver circuit
Get the Chip Cooler (Choices)

1. Buy a heat sink and attach it to the chip.

2. Put the entire circuit in non-conductive oil, like canola oil. (Rumored to work, we haven’t tried this personally.)
Get a New Motor Driver Circuit (Choices)

1. Buy a chip with a larger power rating on the data sheet.

2. Buy a motor driver circuit with a heat sink from your instructor. $20. Can do bi-directional, but only one line. (Steppers need 4 lines.)

3. Use several MOSFETs in parallel. (Unidirectional only, of course.)