ES204 Mechanical Systems

General Plane Motion Vector Approach to Velocity Kinematics Lecture 15

Dr. Fisher

Rigid body motion

Three types of motion

- 1. Translation (every line remains parallel to original orientation)
- 2. Fixed Axis Rotation (every point travels in a circle about a fixed point)
- General Plane Motion (a combination of translation + rotation)

3

Panel 4

Three types of plane motion

Type of motion	How to find the velocity of a point on the rigid body
1. Translation	$\overrightarrow{V_a} = \overrightarrow{V_b}$ (All points have same velocity)
Fixed axis rotation	$\overrightarrow{V_p} = \overrightarrow{\odot}^{\times} \overrightarrow{r_{p/o}}$ Velocity determined by omega and distance to the fixed pt of rotation
General plane motion	Instantaneous center of velocity Scalar approach
	o Need to know the directions of the velocities of two points
	 Vector algebra approach
	Vector algebra approach Write position vectors

Starting with relative motion

If two points A and B are on the same rigid body

$$\vec{\boldsymbol{v}}_{B/A} = \vec{\boldsymbol{\omega}} \times \vec{\boldsymbol{r}}_{B/A}$$

Magnitude = ω r_{B/A} for plane motion Direction = perpendicular to ω and r_{B/A}

So, for general plane motion

$$ec{oldsymbol{v}_{\scriptscriptstyle B}} = ec{oldsymbol{v}_{\scriptscriptstyle A}} + ec{oldsymbol{\omega}} imes ec{oldsymbol{r}}_{\scriptscriptstyle B/A}$$

General equation to relate two velocity of two points on the same rigid body

5

Panel 6

Arm OB of the linkage has a clockwise angular velocity of 10 rad/s in the position shown where θ =45°. Determine:

- (a) the velocity of point A,
- (b) the velocity of point D,
- (c) the angular velocity of link AB (taken from Engineering Mechanics, 3rd Edition by Meriam & Kraige)

VB= WAB B/IC 605= WAB (145) WAB= 4.28 ms) VA= WAB VA/IC

VA = 4.28 (14) VA = 60 13

6

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

Department of Mechanical Engineering

ES 204

Example Problem - Le 13

 Arm OB of the linkage has a clockwise angular velocity of 10 rad/s in the position

- shown where θ =45°. Determine:
 (a) the velocity of point A,
 - (b) the velocity of point D,
- (c) the angular velocity of link AB (taken from Engineering Mechanics, 3rd Edition by Meriam & Kraige)

Mechanical Systems

Vector Approach (Relative Motion)

Strategy:

- 1. Solve for $\overline{v}_{\scriptscriptstyle B}$ knowing $\omega_{\scriptscriptstyle OB}$ and $\overline{r}_{\scriptscriptstyle B/O}$
- 2. Knowing \overline{v}_{B} and $\overline{r}_{A/B}$, solve for \overline{v}_{A} and ω_{AB}
- 3. Knowing \overline{v}_B and $\overline{r}_{D/B}$, solve for \overline{v}_D

Part 1:

$$\overline{v}_{\scriptscriptstyle B} = \overline{v}_{\scriptscriptstyle O} + \omega_{\scriptscriptstyle OB} \times \overline{r}_{\scriptscriptstyle B/O}$$

Since O is hinged and therefore the point of rotation, $\vec{v}_O=0$. From the diagram, $\omega=-10\hat{k}\,r\alpha d/s$ and $\vec{r}_{R/O}=-6\hat{i}+6\hat{j}\,in$. Thus

Panel 8

$$\overline{v}_B = (-10\hat{k}) \times (-6\hat{i} + 6\hat{j}) = 60\hat{i} + 60\hat{j} \text{ in/s}$$
 (1)

Part 2:

$$\begin{split} \overline{v}_A &= \overline{v}_B + \widecheck{\omega}_{AB} \times \overline{r}_{A+B} \\ &= v_{B,x} \widehat{i} + v_{B,y} \widehat{j} + \left(\omega_{AB} \widehat{k}\right) \times \left(r_{A+B,y} \widehat{i} + r_{A+B,y} \widehat{j}\right) \\ v_{A,x} \widehat{i} + v_{A,y} \widehat{j} &= v_{B,x} \widehat{i} + v_{B,y} \widehat{j} - \omega_{AB} r_{A+B,x} \widehat{j} + \omega_{AB} r_{A+B,y} \widehat{j} \end{split}$$

From the diagram, $v_{A,y}=0$ and $\vec{r}_{A/B}=-14\hat{i}+0\hat{j}$ in. Thus we can write the last equation from above in component form:

$$\hat{i}$$
: $v_{A,x} = v_{B,x} - \omega_{AB} r_{A/B,y}$

$$v_{A,x} = v_{B,x} - 0$$
 (2)

$$\hat{j}: \qquad v_{A,y} = v_{B,y} + \omega_{AB} r_{A/B,x}$$

$$0 = v_{B,y} + \omega_{AB}(-14) \quad (3)$$

Solving the two equations (2,3) for the two unknowns ($v_{A.x}$, ω_{AB}):

$$v_{A,x} = 60 \text{ in/s}, v_{A,y} = 0 \text{ in/s} \implies \overline{v}_A = 60\hat{i} \text{ in/s}$$

$$\omega_{AB} = 4.28 \implies \omega_{AB} = 4.28\hat{k} \ rad/s$$

Part 3:

Vector Algebra Example

Page 1 of 2

Panel 9

Panel 10

For the train wheel shown, find the velocity of the piston and the angular velocity of push arm AB when the velocity of the train is 80 ft/s. Assume no slip

Quick summary:

We knew Vo so we found V_b since it's on the wheel V_b is also on the arm so we related it to V_A

Relating V_B to Vo

$$\vec{V}_B = \vec{V}_0 + \vec{\omega}_{80} \times \vec{r}_{8/0}$$

Relating V_A to V_B

$$\vec{\nabla}_A = \vec{\nabla}_B + \vec{\omega}_{BA} \times \vec{r}_{A/B}$$

13