ES204 Mechanical Systems Introduction to Impact Lecture 06

Draw the impact to label directions

Terminology

<u>Central Impact</u>: Both mass centers are located on the line of impact (always true for particles).

 $\underline{\textbf{Eccentric Impact}}; \ \ \textbf{B oth mass centers are not located on the line of impact}.$

3

Panel 4

Terminology (cont.)

Direct Impact: Both velocities, vA and vB, lie along the line of impact.

Oblique Impact: Both velocities, v_A and v_B , do not lie along the impact.

4

Velocity Type of Impact

Center of Mass Type of Impact

Central Impact (Both masses on the line of impact)

Eccentric Impact (Mass centers NOT along line of impact

Direct Impact	Oblique Impact
(Both velocities on line of impact)	(Velocities NOT along impact)

Direct	Oblique
Central	Central
Direct	Oblique
Eccentric	Eccentric

4

Panel 6

Procedure

 Draw Impulse-momentum diagrams. You can do each object individually or both of them together. Label the n and t directions.

Momentum after time interval Momentum before time interval

Impulses during time interval

- 2. If you have two objects hitting each other you will have a total of two independent systems. Using conservation of linear momentum (finite time) you can get a total of 4 independent equations. Sometimes it is useful to look at both objects together and other times individually. Do whatever is clearer for you.
- If the objects bounce off of each other you will need to use the "coefficient of restitution" (experimentally determined for a given combination of materials, assumed to be constant).

6

Coefficient of restitution

$$\mathbf{c} = -\left(\frac{\mathbf{v}_{\mathtt{pB}_{\mathtt{a}}}^{\prime} - \mathbf{v}_{\mathtt{pA}_{\mathtt{a}}}^{\prime}}{\mathbf{v}_{\mathtt{pB}_{\mathtt{a}}}^{\prime} - \mathbf{v}_{\mathtt{pA}_{\mathtt{a}}}^{\prime}}\right) \qquad \text{or} \qquad \mathbf{v}_{\mathtt{pB}_{\mathtt{a}}}^{\prime} - \mathbf{v}_{\mathtt{pA}_{\mathtt{a}}}^{\prime} = -\mathbf{c}\left(\mathbf{v}_{\mathtt{pB}_{\mathtt{a}}}^{\prime} - \mathbf{v}_{\mathtt{pA}_{\mathtt{a}}}^{\prime}\right) = \mathbf{c}\left(\mathbf{v}_{\mathtt{pA}_{\mathtt{a}}}^{\prime} - \mathbf{v}_{\mathtt{pB}_{\mathtt{a}}}^{\prime}\right)$$

where

e = the coefficient of restitution (0 $\leq e \leq 1$)

 ν'_{PA_n} = the velocity of the point of contact on object A in the normal direction after the impact

 $v_{p_{B_n}}' =$ the velocity of the point of contact on object B in the normal direction after the impact

 v_{PA_n} = the velocity of the point of contact on object A in the normal direction before the impact

 v_{PB_n} = the velocity of the point of contact on object B in the normal direction before the impact

For many problems this will reduce to: $v'_{B_1} - v'_{A_2} = e(v_{A_2} - v_{B_2})$

7

Panel 8

Ball A has a weight of 6 lb and block B has a weight of 18 lb. If A is released from rest and the coefficient of restitution between A and B is 0.5, determine the velocity of A and B just after the impact.

What kinetic solving strategies do we need?

Phase 1:

Phase 2:

Kinetic methods:

1. Rate form of Conservation of Momentum

2. Engergy

3. Finite form of Conservation of Momentum

8

