Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

Example Problem - Le28

2. The fire truck is moving forward at a speed of $35 \mathrm{mi} / \mathrm{hr}(51.33 \mathrm{ft} / \mathrm{sec})$ and is decelerating at the rate of $10 \mathrm{ft} / \mathrm{sec}^{2}$. Simultaneously, the ladder is being raised and extended. At the instant considered, the angle is 30° and is increasing at the constant rate of $10 \mathrm{deg} / \mathrm{sec}$. Also, at this instant the extension b of the ladder is 5 ft , with an extension rate of $2 \mathrm{ft} / \mathrm{sec}$ and an extension acceleration of $-1 \mathrm{ft} / \mathrm{sec}^{2}$.

Determine:

1. The global velocity and acceleration of point A
2. The reaction at B if the weight of the ladder is 100 pounds and it is modeled as a homogenous slender rod. Replace the piston with an applied moment at B .

Part 1:Velocity and Acceleration of A
Step 1: Identify System - the ladder
Step 2: Identify Form of Equations Required - the problem is pure kinematics and will require rotating frames. Point B is a great choice for the origin of the local reference frame.
Step 3: Draw system diagrams and identify unknowns.

At the instant shown :

$$
\begin{aligned}
& b=5 \mathrm{ft} \\
& \dot{b}=2 \mathrm{ft} / \mathrm{s} \\
& \ddot{b}=-1 \mathrm{ft} / \mathrm{s}^{2} \\
& \Omega=10 \circ / \mathrm{s}=\frac{\pi}{18} \mathrm{rad} / \mathrm{s} \\
& \dot{\Omega}=0 \\
& \bar{v}_{B}=51.33 \mathrm{ft} / \mathrm{s} \hat{I} \\
& \bar{a}_{B}=-10 \mathrm{ft} / \mathrm{s}^{2} \hat{I}
\end{aligned}
$$

Step 4: Kinetics

Part 1 is pure kinematics so kinetics are not required

Step 5: Kinematics

Frame Coordinate Transformation Matrix

$$
\left[\begin{array}{l}
\hat{i} \\
\hat{j}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
\hat{I} \\
\hat{J}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{c}
\hat{I} \\
\hat{J}
\end{array}\right]
$$

Rotating Frame relative velocity of A wrt B

$$
\bar{v}_{A}=\bar{v}_{B}+\bar{\Omega} \times \bar{r}_{A / B}+\left(\bar{v}_{A / B}\right)_{x y}
$$

Expanding and collecting I, i and J,j components
I, i :
$v_{A_{X}} \hat{I}=v_{B_{X}} \hat{I}-\Omega r_{A / B_{y}} \hat{i}+\left(v_{A / B}\right)_{x y_{x}} \hat{i}$
J, j:
$v_{A_{Y}} \hat{J}=v_{B_{Y}} \hat{J}+\Omega r_{A / B_{x}} \hat{j}+\left(v_{A / B}\right)_{x y_{y}} \hat{j}$

Substituting our knowns

$$
\begin{array}{ll}
\mathrm{I}, \mathrm{i}: & v_{A_{X}} \hat{I}=51.33 \hat{I}-\frac{\pi}{18} 0 \hat{i}+2 \hat{i}=51.33 \hat{I}+2 \hat{i} \\
\mathrm{~J}, \mathrm{j}: & V_{A_{Y}} \hat{J}=0 \hat{I}+\frac{\pi}{18} 25 \hat{j}+0 \hat{j}=\frac{25 \pi}{18} \hat{j} \tag{4}
\end{array}
$$

Combining (3) and (4)

$$
\begin{equation*}
\bar{v}_{A}=51.33 \hat{I}+\left(2 \hat{i}+\frac{25 \pi}{18} \hat{j}\right) \tag{5}
\end{equation*}
$$

Note that we have mixed frames - applying the coordinate transformation matrix to convert the local velocities to global velocities.

$$
2 \hat{i}+\frac{25 \pi}{18} \hat{j} \Rightarrow\left[\begin{array}{ll}
2 & 4.36
\end{array}\right]\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{l}
\hat{I} \\
\hat{J}
\end{array}\right]=-1.61 \hat{I}-0.734 \hat{J}
$$

Substituting into (5)

$$
\bar{v}_{A}=50.9 \hat{I}+4.78 \hat{J}
$$

Rotating Frame relative acceleration of A wrt B

$$
\bar{a}_{A}=\bar{a}_{B}+\dot{\bar{\Omega}} \times \bar{r}_{A / B}+\bar{\Omega} \times\left(\bar{\Omega} \times \bar{r}_{A / B}\right)+2 \bar{\Omega} \times\left(\bar{v}_{A / B}\right)_{x y}+\left(\bar{a}_{A / B}\right)_{x y}
$$

Expanding and collecting I,i and J,j components

I, i :

J, j:

Substituting our knowns

I, i :

J, j:

Combining

Resolving the mixed frames

Thus the acceleration is

