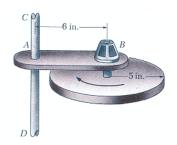
ROSE-HULMAN INSTITUTE OF TECHNOLOGY

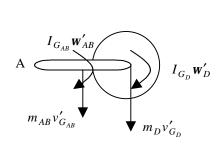

Department of Mechanical Engineering

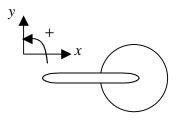
ES 204 Mechanical Systems

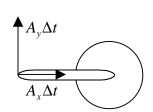
Example Problem - Le 19

17.95 A 10-lb disk is attached to the shaft of a motor mounted on arm AB which is free to rotate about the vertical axle CD. The arm-and-motor unit has a moment of inertia of 0.032 lb ft s² with respect to the axle CD, and the normal operating speed of the motor is 360 rpm. Knowing that the system is initially at rest, determine the angular velocities of the arm and of the disk when the motor reaches a speed of 360 rpm.

> (taken from Vector Mechanics for Engineers, 5th Edition by Beer & Johnston)


Strategy: Use COAM(FT) (*impulse-momentum*)


Known:


$$W_D = 10 \, lb$$

$$I_{A_{AB}} = 0.032 \, lb \, ft \, s^2$$

$$I_{A_{AB}} = 0.032 \, lb \, ft \, s^2$$
 $\mathbf{w}'_m = 360 \, rpm = 37.7 \, rad/s$

After

Before

During

Kinetics: COAM(FT) about A

$$\left(-I_{G_{AB}}\mathbf{w}'_{AB} - I_{G_{D}}\mathbf{w}'_{D} - m_{AB}v'_{G_{AB}}r_{G_{AB}/A} - m_{D}v'_{G_{D}}r_{G_{D}/A}\right) - 0 = 0$$
(1)

Kinematics:

relate v_{G} and ω

$$v'_{G_{AR}} = \mathbf{w}'_{AB} r_{G_{AR}/A} \tag{2}$$

$$v_{G_D}' = \mathbf{w}_{AB}' r_{G_D/A} \tag{3}$$

relative angular velocity

$$\mathbf{w}_{D}' = \mathbf{w}_{AB}' + \mathbf{w}_{D/AB}' = \mathbf{w}_{AB}' + \mathbf{w}_{m}' \tag{4}$$

since the angular velocity is in the k direction, the total angular velocity of the disk is the sum of the angular velocity of the motor and the angular velocity of the arm.

Other:

$$I_{A_{AB}} = I_{G_{AB}} + m_{AB} r_{G_{AB}/A}^2 \qquad I_{G_D} = \frac{1}{2} m_D r_D^2$$
 (5)

Solving:

$$\begin{aligned} \overline{\mathbf{w}}_{AB} &= 71.1 \hat{k} \ rpm \\ \overline{\mathbf{w}}_{D} &= -289 \hat{k} \ rpm \end{aligned}$$

Impulse Momentum Page 1 of 1