Example Problem - Le 15

Ex. The wheel rolls up the incline on its hubs without slipping and is pulled by the $100-\mathrm{N}$ force applied to the cord wrapped around its outer rim. If the wheel start from rest, compute its angular velocity after its center has moved a distance of 3-m up the incline. The wheel has a mass of $40-\mathrm{kg}$ with a center of mass at O and has a centroidal radius of gyration of $150-\mathrm{mm}$. (taken from Engineering Mechanics, 4th Edition by Meriam \& Kraige)

Known:

unk	eqs
ω_{2}	1
$\mathrm{E}_{\mathrm{K} 2}$	2
$\mathrm{E}_{\mathrm{G} 2}$	3
$\mathrm{E}_{\mathrm{K} 1}$	4
$\mathrm{E}_{\mathrm{G} 1}$	5
W	6
$\mathrm{v}_{\mathrm{G}, 2}$	7
I_{G}	8
s	9
z	10
$\mathrm{r}_{\mathrm{G} / \mathrm{C}}$	11

$$
m=40 \mathrm{~kg} \quad P=100 \mathrm{~N} \quad k_{G}=0.15 \mathrm{~m}
$$

Kinetics:

COE(FT)

$$
\begin{array}{cc}
\Delta E_{s y s}=W \\
\left(E_{K 2}+E_{G 2}\right)-\left(E_{K 1}+E_{G 1}\right)=W \\
E_{K 1}=0 & \text { (2) } \quad E_{K 2}=\frac{1}{2} m v_{G, 2}^{2}+\frac{1}{2} I_{G} \omega_{2}^{2} \\
E_{G 1}=0 \quad \text { (3) } \quad E_{G 2}=m g z \tag{5}\\
W=P s \neq P(3 m)
\end{array}
$$

$$
\begin{gather*}
v_{G, 2}=\omega_{2} r_{G / I C} \tag{7}\\
r_{G / I C}=0.1 \mathrm{~m} \tag{8}\\
s=9 \mathrm{~m} \tag{9}
\end{gather*}
$$

Other:

$$
\begin{gather*}
I_{G}=m k_{G}^{2}=0.9 \mathrm{kgm}^{2} \tag{10}\\
\quad z=3 \sin \left(15^{\circ}\right) \mathrm{m} \tag{11}
\end{gather*}
$$

Solving:

$$
\omega_{2}=30.3 \mathrm{rad} / \mathrm{s}
$$

