Example Problem - Le 14

Kinetics:

6.121 AB is the cross section of a garage door which is a rectangular 2.5 m by 5 m panel of uniform thickness with a mass of 200 kg . The door is supported by the struts of negligible mass and hinged at O . Two spring-and-cable assemblies, one on each side of the door, control the movement. When the door is in the horizontal open position, each spring is unextended. If the door is given a slight push from the open position and allowed to fall, determine the spring constant k for each spring which will limit the angular velocity of the door to $1.5 \mathrm{rad} / \mathrm{s}$ when edge B strikes the floor. (taken from Engineering Mechanics, 4th Edition by Meriam \& Kraige)

System: garage door, springs, and cable

$$
\begin{align*}
& \Delta E_{\text {sys }}=W=0 \\
& E_{K 1}+E_{G 1}+E_{S 1}=E_{K 2}+E_{G 2}+E_{S 2} \tag{1}\\
& E_{K 1}=0 \tag{5}\\
& E_{G 1}=0 \tag{3}\\
& E_{S 1}=0 \tag{7}\\
& \text { (2) } E_{K 2}=\frac{1}{2} m v_{G, 2}^{2}+\frac{1}{2} I_{G} \omega_{2}^{2} \\
& E_{G 2}=-m g h \tag{6}\\
& E_{S 2}=2\left(\frac{1}{2} k x^{2}\right) \tag{4}
\end{align*}
$$

unk	eqs
k	1
$\mathrm{E}_{\mathrm{K} 1}$	2
$\mathrm{E}_{\mathrm{G} 1}$	3
$\mathrm{E}_{\mathrm{S} 1}$	4
$\mathrm{E}_{\mathrm{K} 2}$	5
$\mathrm{E}_{\mathrm{G} 2}$	6
$\mathrm{E}_{\mathrm{S} 2}$	7
$\mathrm{~V}_{\mathrm{G}, 2}$	8
x	9

Kinematics:

relate velocities

$$
\begin{equation*}
v_{G, 2}=\omega_{2} r_{G / O} \tag{8}
\end{equation*}
$$

dependant motion

$$
\begin{equation*}
2 x+y=L \Rightarrow x=\frac{y}{2} \tag{9}
\end{equation*}
$$

Other:

$$
\begin{array}{ccc}
\omega_{2}=1.5 \mathrm{rad} / \mathrm{s} & r_{G / O}=1.25 \mathrm{~m} & y=2.5 \mathrm{~m} \\
m=200 \mathrm{~kg} & h=1.25 \mathrm{~m} & I_{G}=1 / 12 \mathrm{~mL}^{2} \mathrm{kgm}^{2}
\end{array}
$$

Solving:

$$
k=1270 \mathrm{~N} / \mathrm{m}
$$

