ROSE-HULMAN INSTITUTE OF TECHNOLOGY

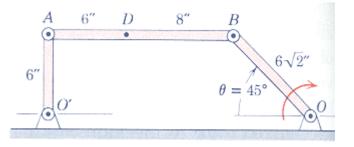
Department of Mechanical Engineering

ES 204 Mechanical Systems

Example Problem - Le 13

Ex. Arm OB of the linkage has a clockwise angular velocity of 10 rad/s in the position shown where θ =45°. Determine:

- (a) the velocity of point A,
- (b) the velocity of point D,
- (c) the angular velocity of link AB (taken from Engineering Mechanics, 3rd Edition by Meriam & Kraige)



Vector Approach (Relative Motion)

Strategy:

- 1. Solve for \overline{v}_B knowing $\overline{\boldsymbol{W}}_{OB}$ and $\overline{r}_{B/O}$
- 2. Knowing \overline{v}_B and $\overline{r}_{A/B}$, solve for \overline{v}_A and $\overline{\textbf{\textit{W}}}_{AB}$
- 3. Knowing \overline{v}_{B} and $\overline{r}_{D/B}$, solve for \overline{v}_{D}

Part 1:

$$\overline{v}_{B} = \overline{v}_{O} + \overline{\mathbf{w}}_{OB} \times \overline{r}_{B/O}$$

Since O is hinged and therefore the point of rotation, $\overline{v}_O=0$. From the diagram, $\overline{w}=-10\hat{k}\ rad/s$ and $\overline{r}_{R/O}=-6\hat{i}+6\hat{j}\ in$. Thus

$$\overline{v}_B = (-10\hat{k}) \times (-6\hat{i} + 6\hat{j}) = 60\hat{i} + 60\hat{j} in/s$$
 (1)

Part 2:

$$\begin{split} \overline{v}_{A} &= \overline{v}_{B} + \overline{\boldsymbol{w}}_{AB} \times \overline{r}_{A/B} \\ &= v_{B,x} \hat{i} + v_{B,y} \hat{j} + \left(\boldsymbol{w}_{AB} \hat{k} \right) \times \left(r_{A/B,x} \hat{i} + r_{A/B,y} \hat{j} \right) \\ v_{A,x} \hat{i} + v_{A,y} \hat{j} &= v_{B,x} \hat{i} + v_{B,y} \hat{j} - \boldsymbol{w}_{AB} r_{A/B,x} \hat{j} + \boldsymbol{w}_{AB} r_{A/B,y} \hat{i} \end{split}$$

From the diagram, $v_{A,y} = 0$ and $\bar{r}_{A/B} = -14\hat{i} + 0\hat{j}$ in . Thus we can write the last equation from above in component form:

$$\hat{i}$$
: $v_{A,x} = v_{B,x} - \mathbf{W}_{AB} r_{A/B,y}$ $v_{A,x} = v_{B,x} - 0$ (2)

$$\hat{j}$$
: $v_{A,y} = v_{B,y} + \mathbf{w}_{AB} r_{A/B,x}$
$$0 = v_{B,y} + \mathbf{w}_{AB} (-14) \quad (3)$$

Solving the two equations (2,3) for the two unknowns ($v_{A,x}$, \mathbf{W}_{AB}):

$$v_{A,x} = 60 \text{ in/s}, v_{A,y} = 0 \text{ in/s} \implies \overline{v}_A = 60 \hat{i} \text{ in/s}$$

 $\mathbf{w}_{AB} = 4.28 \implies \overline{\mathbf{w}}_{AB} = 4.28 \hat{k} \text{ rad/s}$

Part 3:

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

Department of Mechanical Engineering

ES 204 Mechanical Systems

$$\begin{split} \overline{v}_D &= \overline{v}_B + \overline{\mathbf{W}}_{AB} \times \overline{r}_{D/B} \\ &= v_{B,x} \hat{i} + v_{B,y} \hat{j} + \left(\mathbf{W}_{AB} \hat{k} \right) \times \left(r_{D/B,x} \hat{i} + r_{D/B,y} \hat{j} \right) \\ v_{D,x} \hat{i} + v_{D,y} \hat{j} &= v_{B,x} \hat{i} + v_{B,y} \hat{j} - \mathbf{W}_{AB} r_{D/B,x} \hat{j} + \mathbf{W}_{AB} r_{D/B,y} \hat{i} \end{split}$$

From the diagram, $\bar{r}_{D/B} = -8\hat{i} + 0\hat{j}$ in . Thus we can write the last equation from above in component form:

$$\hat{i}: v_{D,x} = v_{B,x} - \mathbf{W}_{AB} r_{D/B,y}$$

$$v_{D,x} = v_{B,x} - 0 (4)$$

$$\hat{j}: v_{D,y} = v_{B,y} + \mathbf{W}_{AB} r_{D/B,x}$$

$$v_{D,y} = v_{B,y} + 4.28(-8) (5)$$

Solving the two equations (4,5) for the two unknowns ($\mathcal{V}_{D,x}\,$, $\mathcal{V}_{D,y}$):

$$v_{D,x} = 60 in/s$$
, $v_{D,y} = 25.76 in/s$
 $v_D = 60\hat{i} + 25.76 \hat{j} in/s$

which is identical to the result obtained using the instantaneous center of velocity and the scalar approach.

Vector Algebra Example