Rose-Hulman Institute of Technology

Department of Mechanical Engineering

Example - Le 04

2.137 The rocket is fired vertically and tracked by the radar shown. When $\theta=60^{\circ}$, other corresponding measurements give the values of $r=30,000 \mathrm{ft}$, $\ddot{r}=70 \mathrm{ft} / \mathrm{s}^{2}$, and $\dot{\theta}=0.02 \mathrm{rad} / \mathrm{s}$. Calculate the velocity and acceleration of the rocket at this position.

$$
\text { Ans. } \begin{aligned}
v & =1200 \mathrm{ft} / \mathrm{s} \\
a & =67.0 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

(taken from Dynamics, 3rd Edition by Merriam \& Kraige)

