Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

Example Problem - Le 02

11.48 Collar A starts from rest at $t=0$ and moves upward with a constant acceleration of $3.6 \mathrm{in} / \mathrm{s}^{2}$. Knowing that collar B moves downward with a constant velocity of $16 \mathrm{in} / \mathrm{s}$, determine:
(a) the time at which the velocity of block C is zero,
(b) the corresponding position of block C .
(taken from Vector Mechanics for Engineers, 5th Edition by Beer \& Johnston)

Known: at $\mathrm{t}=0, \mathrm{v}_{\mathrm{A}}=0$
$\mathrm{a}_{\mathrm{A}}=3.6 \mathrm{in} / \mathrm{s}^{2} \quad$ (const)
$\mathrm{v}_{\mathrm{B}}=16 \mathrm{in} / \mathrm{s} \quad($ const $) \mathrm{a}_{\mathrm{B}}=0$
Find: time when $v_{C}=0$
corresponding position of C
Strategy: This problem only involves velocities and accelerations, therefore only kinematics are required. We'll probably need to start with dependent motion and then do clever things with integration.

Dependent Motion:

Based on the above selection of datum and position vectors, make sure you can come up with

$$
\begin{aligned}
L & =\left(y_{B}-y_{A}\right)+\left(y_{C}-y_{A}\right)+2\left(y_{C}-y_{B}\right)+\text { Const } \\
& =-2 y_{A}-y_{B}+3 y_{C}+\text { Const }
\end{aligned}
$$

Differentiating:

$$
\begin{align*}
0 & =-2 v_{A}-v_{B}+3 v_{C} \tag{1}\\
0 & =-2 a_{A}-a_{B}+3 a_{C} \tag{2}
\end{align*}
$$

We are interested in block C, what can we find out? How about acceleration from (2)

$$
\begin{equation*}
a_{C}=-2.4 \mathrm{in} / \mathrm{s}^{2} \tag{3}
\end{equation*}
$$

Knowing acceleration, we can get velocity

$$
\begin{equation*}
a_{C}=\frac{d v_{C}}{d t} \Rightarrow a_{C} d t=d v_{C} \Rightarrow \int_{0}^{t}-2.4 d t=\int_{v_{C o}}^{v_{C}} d v_{C} \quad \Rightarrow \quad-2.4 t=v_{C}-v_{C o} \tag{4}
\end{equation*}
$$

where v_{Co} is the initial velocity of C . We can get the initial velocity of C from equation (1) as $\mathrm{v}_{\mathrm{Co}}=5.33 \mathrm{in} / \mathrm{s}$, thus we can solve (4) for the time when $\mathrm{v}_{\mathrm{C}}=0$ to be

$$
t_{v_{C}=0}=2.22 \mathrm{~s}
$$

I'll leave it to you to use the kinematic relationship between position and velocity along with (4) to come up with the distance traveled from C's original position to be

$$
\begin{aligned}
& x=5.93 \text { in } \\
& \text { what is the direction? }
\end{aligned}
$$

