Problem CP-1 - Analysis of an Overhead Crane

The illustrated pendulum/cart system is used to model the motion of an overhead crane. If the cart is given a specified acceleration profile

$$b(t) = \frac{3597e^{x}(1 - e^{x})}{(1 + e^{x})^{3}} + \frac{3597e^{y}(1 - e^{y})}{(1 + e^{y})^{3}} \text{ cm/s}^{2}$$

where

$$x = -43.5668t + 9.38$$

$$y = -43.5668t + 31.1633$$

and 0 s < t < 0.9 s, determine the best location of the moveable weight's mass center L_{wcg} such that the pendulum's angular velocity is zero at t = 0.9 s. Note that there will be an unknown force acting in the direction of the cart motion so that the cart experiences the specified acceleration.

Figure 1: Crane system schematic.

Values for the various system parameters are provided in Table 1.

Table 1: Crane system parameters and their values.

Parameter	Value	Units
Pendulum mass, m_p	68.5	g
Moveable weight's mass, m_{add}	88	g
Pendulum length, L_p	43.2	cm
Sensor diameter, d_s	2.5	cm
Moveable weight's diameter, d_w	5	cm

Notes:

- Draw the system in a displaced orientation to obtain the governing differential equation. (This is the most important part of the analysis!).
- Write your resulting non-linear differential equation in the following format:

[something]
$$\ddot{\theta}$$
 + [something else] $\sin(\theta)$ = [something different] $b(t)\cos(\theta)$

When implementing this equation in Maple, it should look something like this:

diff_eq:=(IGp+IGw+mp*LGp^2+mw*Lw^2)*diff(theta(t),t\$2)+(mp*LGp+mw*Lw)*g*sin(theta(t))= ... (right-hand side missing on purpose – we don't want to give you the whole answer!)

Maple can numerically solve the non-linear differential equation of motion using the following syntax:
soln := dsolve({diff eq, theta(0) = 0, D(theta)(0) = 0}, theta(t), numeric);

To plot your solution, use the syntax

> odeplot(soln, [t, D(theta)(t)], 0..2, numpoints = 300);

Be sure to include > with(plots): at the beginning of your Maple worksheet. Once your Maple worksheet is working correctly for a particular value of L_{wcg} , you can then vary L_{wcg} to find the location where the angular velocity is zero at the end of the acceleration at t = 0.9 s.