Table W1. Comparison of the numerical, analytical, and experimental values for the weight position, L_{opt} , that minimizes the time it takes for the pendulum to reach the bottom of its swing.

Questions:

Start a new Word document and type your answers to the following questions:

- 1. How do the numerical, analytical, and experimental values for the optimal weight location, L_{opt} , in Table W1 compare?
- 2. Describe the similarities and differences between your plotted experimental data for the average swing time, Δt , as a function of the circular weight location, $L_{\rm w,cg}$, and your numerical simulation results from Lab 2.
- 3. What do you think is contributing to discrepancies in the results? Provide reasonable explanations. (Is air drag reasonable?)

Attach the following to this worksheet:

- 1. A printout of your plot illustrating how the pendulum's average swing time, Δt , varies with the circular weight's location (in centimeters) along the rod, $L_{\rm w,cg}$, for your experimental data and your numerical simulation results from Lab 2. Be sure to do the following:
 - Properly label your axes with units and use markers that are not connected with a line.
 - Use different markers for your experimental data and your numerical simulation results, and include a legend to clearly identify what each set of markers represents.
 - Include your initials and the date in the title of the figure, and remove the gray border around the figure.
 - Copy your plot into a Word file by selecting Edit → Copy Figure in the figure window and pasting the plot into your Word file.
- 2. A printout of your Word document containing your answers to the questions asked in this worksheet.
- 3. A printout of your Excel data sheet that has been **signed and dated** at the bottom.
- 4. A printout of your MATLAB m-file used to plot the experimental data and numerical simulation results in the same figure.