MA311 - Introduction to Probability Minitab Simulation Project

Name:	Box #:
1 101110:	DOX 77.

1. Purpose of Project

The purposes of this project will be:

- 1. Gain some experience using Minitab
- 2. Gain some experience with simulated data
- 3. Gain some intuition on sums of random variables and the central limit theorem
- 4. Gain some intuition on transforming data

2. Work product

A typed report based on the three questions below. The report should contain

- A cover memo of submission, signed by all participants and a statement of the contributions of the team members.
- Introduction
- One section each responding to each of the three problems below.
- Any relevant graphs should be included in the report and referenced.
- Conclusion for each section.

3. Effect of sample size

Select any two distributions you like and construct the following for a random variable with those distributions. The population median is $\tilde{\mu}$, i.e.,

$$P(-\infty < X < \widetilde{\mu}) = P(\widetilde{\mu} < X < \infty)$$

distribution	μ	σ	$\widetilde{\mu}$	$P(a \le X \le b)$

table. Now complete the two tables using randomly selected data: N = sample size, $\overline{x} = \text{sample}$ mean s = sample standard deviation, $\tilde{x} = \text{sample}$ median. For both distributions fill in the following tables (select an appropriate a and b).

N	\overline{x}	s	\tilde{x}	$\frac{\#\{a \leq X \leq b\}}{N}$
256				
1024				
4096				
16386				

N	$ \overline{x} - \mu $	$ s-\sigma $	$ \widetilde{x}-\widetilde{\mu} $	$\left \frac{\#\{a \le X \le b\}}{N} - P(a \le X \le b) \right $
256				
1024				
4096				
16386				

After completing the tables draw as many conclusions as you can.

4. Transforms of variables

Let X be a uniform random variable on [0,1]. Then $Y = -\ln(X)/\lambda$ is an exponential random variable. Pick suitable sample size as determined by the previous problem. Now make a histogram with 20 bins. Compute the total error between the histogram probabilities and the theoretical probabilities. If bin B_i is described by $x_i \leq Y < x_{i+1}$ then the error for this bin will be

$$\left| \frac{\{x_i \le Y < x_{i+1}\}}{N} - P(x_i \le Y < x_{i+1}) \right|.$$

The total error is the sum of all these probabilities. Repeat this for five selected values of λ . What do you think the effect of λ on the error is.

5. Sums of variables

Pick any distribution with mean μ and standard deviation σ . Let X_1, \ldots, X_{36} , be independent random variables with the given distribution. For n = 4,6,16,25,36 generate N independent samples of X_1, \ldots, X_n also generate.

$$Z_n = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sqrt{n}\sigma}$$

Make histograms of Z_n and draw a conclusion. For k = -3, -2, -1, 0, 1, 2, 3 compute the approximation of $P(Z_n \leq k)$ and compare to the standard normal distribution (errors). Make a table in n and k and draw conclusions.