Disco I - WorkSheet 11

Professor Broughton

Name:_____

Box #:_____

1. Fibonacci and catalan numbers

In the next couple of worksheets we are going determine formulas for the Fibonacci and Catalan numbers by using generating functions. In this worksheet we will come up with a couple of examples of how the Fibonacci and Catalan numbers arise and also derive the recursion formulas.

- 1.1. Fibonacci Numbers
 - 1. Let B_n be the set of all sequences of bits of length n in which two consecutive zeros never occurs. For example 01101 2 B_5 ; but 11001 2 B_5 : Find the ...rst 5 sets. In ...nding these sets organize your work so that you can derive B_3 from B_2 ; B_4 from B_3 and so on.

2. De...ne $b_n = jB_nj$: Find a recursion relation for the sequence fb_ng :

3. Let A_n be the set of subsets of f1; 2; 3; :::; ng in which no two consecutive integers occur. For example f1; 3; 5g 2 A₅; but f1; 3; 4g 2 A₅: Now repeat question 1 with this set up.

4. Let $a_n = jA_nj$: Find a recursion relation for the sequence fa_ng : What is the relation between a_n and b_n ?

1.2. Catalan numbers

5. (See page 145) Let C_n be the set of all bracketed expressions formed from $x_0\,?\,x_1\,?\,x_2\,?\,\mbox{\it cf}\,x_n$: For example

 $C_1 = fx_0 ? x_1g; C_2 = f(x_0 ? x_1) ? x_2; x_0 ? (x_1 ? x_2)g:$

Find C_3 . Then ...nd C_4 by building on your construction for C_3 :

6. Let $c_n = jC_n j$: Find a recursion relation for the sequence $fc_n g$:

7. Let P_n be the set of all triangulated regular polygons with n + 2 sides. For example P_1 and P_2 are given below. Find P_3 . Then ...nd P_4 by building on your construction for P_3 : A suggestion for building is given below.

8. Let p_n = jP_nj: Find a recursion relation for the sequence fp_ng: what is the relation between p_n and c_n?
(picures only on the class handout)