Disco I - WorkSheet 11

Professor Broughton

Name: \qquad Box \#:

1. Fibonacci and catalan numbers

In the next couple of worksheets we are going determine formulas for the F ibonacci and Catalan numbers by using generating functions. In this worksheet we will come up with a couple of examples of how the Fibonacci and Catalan numbers arise and also derive the recursion formulas.

1.1. Fibonacci Numbers

1. Let B_{n} be the set of all sequences of bits of length n in which two consecutive zeros never occurs. For example $011012 \mathrm{~B}_{5}$;but 11001 z B_{5} : Find the ..rst 5 sets. In ..nding these sets organize your work so that you can derive B_{3} from $B_{2} ; B_{4}$ from B_{3} and so on.
2. De..ne $b_{n}=j B_{n} j$: Find a recursion relation for the sequence $f b_{n} g$:
3. Let A_{n} be the set of subsets of $f 1 ; 2 ; 3 ;::: ; n g$ in which no two consecutive integers occur. For example f1; $3 ; 5 \mathrm{~g} 2 \mathrm{~A}_{5}$; but f $1 ; 3 ; 4 \mathrm{~g} Z \mathrm{~A}_{5}$: Now repeat question 1 with this set up.
4. Let $a_{n}=j A_{n} j$: Find a recursion relation for the sequence $f a_{n} g$: W hat is the relation between a_{n} and b_{n} ?

1.2. Catalan numbers

5. (See page 145) Let C_{n} be the set of all bracketed expressions formed from $x_{0} ? x_{1} ? x_{2} ? \$ \not \subset \nmid x_{n}$: For example

$$
C_{1}=f x_{0} ? x_{1} g ; C_{2}=f\left(x_{0} ? x_{1}\right) ? x_{2} ; x_{0} ?\left(x_{1} ? x_{2}\right) g:
$$

Find C_{3}. Then ..nd C_{4} by building on your construction for C_{3} :
6. Let $c_{n}=j C_{n} j$: Find a recursion relation for the sequence $f c_{n} g$:
7. Let P_{n} be the set of all triangulated regular polygons with $n+2$ sides. For example P_{1} and P_{2} are given below. Find P_{3}. Then ..nd P_{4} by building on your construction for P_{3} : A suggestion for building is given below.
8. Let $p_{n}=j P_{n} j$: Find a recursion relation for the sequence $f p_{n} g$: what is the relation between p_{n} and c_{n} ?
(picures only on the class handout)

