Disco I
 WorkSheet 4

September 14, 1998- Professor Broughton
Name:
Box \#: \qquad

1. A ssociativity of products

1.a Let $\circledR^{\circledR}=(1 ; 2 ; 3)(4 ; 5) ;^{-}=(2 ; 3)(4 ; 5){ }^{\circ}=(1 ; 5)$: Compute $\left(®^{-}\right)^{\circ}$ and ${ }^{\circledR}\left({ }^{-}{ }^{\circ}\right)$: W hat do you observe?
1.b Compute $3\left(\mathbb{R}^{-}\right)^{\circ}=3^{\left(®^{-}\right)^{\circ}}$ and $\left.3 ®^{-\circ}\right)=3^{\left.®^{-\circ}\right)}$ step by step. W hat do you observe?
2. Let $\pm=(3 ; 4)$: Write down all the association schemes for $\mathbb{B}^{-}{ }^{\circ} \pm$ and verify that two of them are equal.

2. Commutativity of Products

3.a Let $\circledR^{\circledR}=(1 ; 2 ; 3 ; 4 ; 5) ;^{-}=(3 ; 5 ; 6)$. Does $\circledR^{-}=^{-} \circledR$?
3.b Next try to see if ${ }^{\circ}=(1 ; 3 ; 5) ; \pm=(2 ; 4 ; 6)$ commute.
3.c Write down a conjecture on commutativity of cycles. Ower at least 3 examples as evidence.

3. P owers

4 Let $\circledR^{\circledR}=(1 ; 2 ; 3)$; $^{-}=(6 ; 7)$ and ${ }^{\circ}=\mathbb{B}^{-}$: Compute the powers \mathbb{B}^{\circledR}; $^{-n}{ }^{\mathrm{n}} \mathrm{o}^{\mathrm{n}}$ in a table format until you see a pattern emerge. W hat is the pattern?
5. Make a prediction if $®=(1 ; 2 ; 3 ; 4 ; 5) ;^{-}=(7 ; 8 ; 9)$ and ${ }^{\circ}=®^{-}$:

