Disco I- answers to worksheet 4

1. A ssociativity of products

1.a Let $\circledR^{\circledR}=(1 ; 2 ; 3)(4 ; 5) ;^{-}=(2 ; 3)(4 ; 5) ;^{\circ}=(1 ; 5)$: Compute $\left(®^{-}\right)^{\circ}$ and $\left.\bigotimes^{(-0}\right)$: W hat do you observe?
$\left(®^{-}\right)^{\circ}=[(1 ; 2 ; 3)(4 ; 5)(2 ; 3)(4 ; 5)](1 ; 5)=(1 ; 3)(1 ; 5)=(1 ; 3 ; 5)$
$\left.\bigotimes^{-}{ }^{-}\right)=(1 ; 2 ; 3)(4 ; 5)[(2 ; 3)(4 ; 5)(1 ; 5)]=(1 ; 2 ; 3)(4 ; 5)(1 ; 5 ; 4)(2 ; 3)=(1 ; 3 ; 5)$
1.b Compute $3\left(\mathbb{B}^{-}\right)^{\circ}=3^{\left(®^{-}\right)^{\circ}}$ and $\left.3 \mathbb{B}^{-\circ}\right)=3^{\left.®^{-\circ}\right)}$ step by step. W hat do you observe?

$$
\begin{aligned}
& 3\left(\mathbb{R}^{-}\right)^{\circ}=1^{\circ}=5 \\
& \left.3 \mathbb{B}^{-\circ}\right)=1\left(^{-\circ}\right)=5
\end{aligned}
$$

2. Let $\pm=(3 ; 4)$: Write down all the association schemes for $\circledR^{-}{ }^{\circ} \pm$ and verify that two of them are equal.

$$
\mathbb{®}^{-}\left({ }^{\circ} \pm\right) ; \mathbb{®}\left(\left(^{-}\right) \pm\right) ;\left(\mathbb{B}^{-}\right)\left({ }^{\circ} \pm ;\left(\left(\mathbb{B}^{-}\right)^{\circ}\right) \pm\left(\mathbb{B}^{-\circ}\right)\right) \pm
$$

2. Commutativity of Products

3.a Let $\circledR=(1 ; 2 ; 3 ; 4 ; 5) ;^{-}=(3 ; 5 ; 6)$. Does $\circledR^{-}=^{-} \circledR$?

$$
\begin{aligned}
& \circledR=(1 ; 2 ; 5)(3 ; 4 ; 6) \\
& { }^{\circledR}=(1 ; 2 ; 3)(4 ; 5 ; 6)
\end{aligned}
$$

They do not commute.
3.b Next try to see if ${ }^{\circ}=(1 ; 3 ; 5) ; \pm=(2 ; 4 ; 6)$ commute. They do commute.
3.c Write down a conjecture on commutativity of cycles. Ower at least 3 examples as evidence. Cycles which are disjoint commute.

3. Powers

4 Let $\circledR^{\circledR}=(1 ; 2 ; 3)^{-}=(6 ; 7)$ and ${ }^{\circ}=\circledR^{-}$: Compute the powers $\left.\circledR^{\circledR}\right)^{-n}{ }^{n}{ }^{\circ n}$ in a table format until you see a pattern emerge. What is the pattern?

n	\circledR^{n}	${ }^{-n}$	${ }^{\circ} \mathrm{n}$
1	$(1 ; 2 ; 3)$	$(6 ; 7)$	$(1 ; 2 ; 3)(6 ; 7)$
2	$(1 ; 3 ; 2)$	id	$(1 ; 3 ; 2)$
3	id	$(6 ; 7)$	$(6 ; 7)$
4	$(1 ; 2 ; 3)$	$(\mathrm{id}$	$(1 ; 2 ; 3)$
5	$(1 ; 3 ; 2)$	$(6 ; 7)$	$(1 ; 3 ; 2)(6 ; 7)$
6	id	id	id

The pattern will repeat itself every 3 'rd row in the ..rst column, every second row in the second column, and every sixth row in the third.
5. Make a prediction if $®=(1 ; 2 ; 3 ; 4 ; 5)$; $^{-}=(7 ; 8 ; 9)$ and ${ }^{\circ}=®^{-}$: The elements $\circledR^{\circ}{ }^{-}$and ${ }^{\circ}=\circledR^{-}$have orders 5,3 and 15 respectively.

