Disco I- answers to worksheet 4

1. Associativity of products

1.a Let $^{(R)} = (1;2;3)(4;5); = (2;3)(4;5); ^{\circ} = (1;5)$: Compute $(^{(R)})^{\circ}$ and $^{(R)}(^{\circ})$: What do you observe?

1.b Compute $3(^{\mathbb{R}^-})^\circ = 3^{(^{\mathbb{R}^-})^\circ}$ and $3^{\mathbb{R}}(^{^-\circ}) = 3^{^{\mathbb{R}}(^{^-\circ})}$ step by step. What do you observe?

$$3(^{(R)})^{\circ} = 1^{\circ} = 5$$

 $3^{(R)})^{(-\circ)} = 1(^{-\circ}) = 5$

2. Let $\pm = (3; 4)$: Write down all the association schemes for $\mathbb{B}^{-\circ} \pm$ and verify that two of them are equal.

$$\mathbb{R}((\circ \pm)); \ \mathbb{R}((\circ \pm)); \ (\mathbb{R}^{-})(\circ \pm); \ ((\mathbb{R}^{-})^{\circ})\pm; \ (\mathbb{R}(\circ))\pm$$

2. Commutativity of Products

3.a Let $^{(R)} = (1; 2; 3; 4; 5); ^{-} = (3; 5; 6).$ Does $^{(R)^{-}} = ^{-} ^{(R)^{-}}?$

$$\mathbb{R}^{-} = (1; 2; 5)(3; 4; 6)$$

 $\mathbb{R}^{-} = (1; 2; 3)(4; 5; 6)$

They do not commute.

- 3.b Next try to see if $\circ = (1; 3; 5); \pm = (2; 4; 6)$ commute. They do commute.
- 3.c Write down a conjecture on commutativity of cycles. O¤er at least 3 examples as evidence. Cycles which are disjoint commute.

3. Powers

4 Let [®] = (1; 2; 3); ⁻ = (6; 7) and [°] = [®]⁻: Compute the powers [®]n; ⁻n; [°]n in a table format until you see a pattern emerge. What is the pattern?

n	®n	– n	٥n
1	(1;2;3)	(6;7)	(1; 2; 3)(6; 7)
2	(1; 3; 2)	id	(1; 3; 2)
3	id	(6;7)	(6;7)
4	(1; 2; 3)	(id	(1; 2; 3)
5	(1; 3; 2)	(6;7)	(1; 3; 2)(6; 7)
6	id	id	id

The pattern will repeat itself every 3'rd row in the ...rst column, every second row in the second column, and every sixth row in the third.

5. Make a prediction if $^{\mbox{\scriptsize e}} = (1; 2; 3; 4; 5); ^{-} = (7; 8; 9)$ and $^{\circ} = ^{\mbox{\scriptsize e}}^{-}$: The elements $^{\mbox{\scriptsize e}}; ^{-}$ and $^{\circ} = ^{\mbox{\scriptsize e}}^{-}$ have orders 5, 3 and 15 respectively.