Disco I - answers to worksheet #2

1. The symmetric group

1. Write out all possible "shu- es" or permutations of S_3 the symmetric group on three symbols. Write down the list notation and the disjoint cycle notation for each.

list	cycle
1;2;3	id
1; 3; 2	(2;3)
2;1;3	(1;2)
2; 3; 1	(1; 3; 2)
3; 1; 2	(1;2;3)
3; 2; 1	(1;3)

2. Based on number 1, determine the number of 4-shu- es and 5- shu- es, i.e., ...nd the cardinalities of S_4 and S_5 :

 $jS_4j = 4 \& 3 \& 2 \& 1 = 4! = 24$: $jS_5j = 5 \& 4 \& 3 \& 2 \& 1 = 5! = 120$:

3. Look up the de...nition of adjacency in the text. Find the number of adjacencies in S_3 ; S_4 ; and S_5 :

group	total #adjacencies	average #adjacencies
S ₃	8	$\frac{8}{6} = \frac{4}{3} = 1:3333$
S ₄	36	$\frac{36}{24} = \frac{3}{2} = 1:5$
S ₅	192	$\frac{192}{120} = \frac{8}{5} = 1.6$

4. What is the probability that a deck of 3, 4 or 5 cards will have an adjacency.

group	# of decks with an adjacency	prob of adjacency
S ₃	6	$\frac{6}{6} = 1$
S ₄	22	$\frac{22}{24} = \frac{11}{12} = :91667$
S ₅	106	$\frac{106}{120} = \frac{53}{60} = :88333$