Disco I Comments and Answers to Magma Session

1. Fixed Points

 Remember that a ...xed point is a card that is not moved during a shu-e. Make a table of expected number of ...xed points and probability of getting a ...xed point for several card shu- e sizes. Make a prediction for large deck size. Use the scripts fixpnts.mgm and fixpntsR.mgm.

group	total #xed points	average #xed points
S ₃	6	$\frac{6}{6} = 1$
S ₄	24	$\frac{24}{24} = 1$
S ₅	120	$\frac{120}{120} = 1$
S ₆	720	$\frac{720}{720} = 1$
S ₇	5040	$\frac{5040}{5040} = 1$
large size	n!	1

group	total number ofxedpoints	average # ofxed point
S ₃	6	$\frac{6}{6} = 1$
S ₄	24	$\frac{24}{24} = 1$
S ₅	120	$\frac{120}{120} = 1$
S ₆	720	$\frac{720}{720} = 1$
S ₇	5040	$\frac{5040}{5040} = 1$
large size	n!	1

1.

group	#decks withxedpoints	prob ofxed point
S ₃	4	$\frac{4}{6} = 0.66667$
S ₄	15	$\frac{15}{24} = 0.625$
S ₅	76	$\frac{76}{120} = :63333$
S ₆	455	$\frac{455}{720} = :63194$
S ₇	3186	$\frac{3186}{5040} = :63214$
large size		0:632 or so

2. Adjacencies

group	total #adjacencies	average #adjacencies
S ₃	8	$\frac{8}{6} = 1:3333$
S ₄	36	$\frac{36}{24} = 1:5$
S ₅	192	$\frac{192}{120} = \frac{8}{5} = 1.6$
S ₆	1200	$\frac{1200}{720} = 1:6667$
S ₇	8640	$\frac{8640}{5040} = 1:7143$
S ₅₂	random sample	$\frac{9851}{5000} = 1:9702$

2. I	Do the	e same f	for ac	ljacencie	s as ir	n prob	lem #1	using	adj	.mgm,	adj r	r. mgm.
------	--------	----------	--------	-----------	---------	--------	--------	-------	-----	-------	-------	---------

group	# of decks with an adjacency	prob of adjacency
S ₃	6	$\frac{6}{6} = 1$
S ₄	22	$\frac{22}{24} = \frac{11}{12} = :91667$
S ₅	106	$\frac{106}{120} = \frac{53}{60} = :88333$
S ₆	630	$\frac{630}{720} = \frac{7}{8} = :875$
S ₇	4394	$\frac{4394}{5040} = \frac{2197}{2520} = :8783$

3. Runs of Three

3. Repeat #1 for runs of 3. You will have to modify the code of the other scripts.

group	total #runs of 3	average #runs of 3
S ₄	8	$\frac{8}{24} = \frac{1}{3} = :33333$
S ₅	36	$\frac{36}{120} = \frac{3}{10} = :3$
S ₆	192	$\frac{192}{720} = \frac{4}{15} = :26667$
S ₇	1200	$\frac{1200}{5040} = \frac{5}{21} = :2381$

group	# of decks with a run of 3	prob of a run of 3
S ₄	6	$\frac{6}{24} = \frac{1}{4} = :25$
S ₅	28	$\frac{28}{120} = \frac{7}{30} = :23333$
S ₆	150	$\frac{150}{720} = \frac{5}{24} = .20833$
S ₇	958	$\frac{958}{5040} = \frac{479}{2520} = :19008$

```
Somewhere around 0:2 so far.
Sample Code for runs of three
//// Counting runs of three in random shu- es of small decks
//Session ... le
SetLogFile("run3.log": Overwrite := true);
//run of three counter using cycle notation
numrun := function(pi,n);
   s := 0;
   for i := 1 to n-2 do
       if (Abs((i+1)^pi-(i)^pi) + Abs((i+2)^pi-(i+1)^pi)) eq 2
             then s := s+1; end if;
       end for:
   return s;
   end function;
//de...ne deck size, set up "shu- e group"
n := 5;
G := SymmetricGroup(n);
//average number of runs of three
nrun := 0;
for pi in G do
   nrun := nrun + numrun(pi,n);
   end for;
avgrun := nrun/#G;
print "total number of runs of three ", nrun;
print "avgrun = ", avgrun;
//probability of runs of three
r := 0;
for pi in G do
   if numrun(pi,n) gt 0 then r := r+1; end if;
   end for;
print "num of decks with runs of three ", r;
probrun := r/\#G;
print "probrun = ",probrun;
//End Session
UnsetLogFile();
```